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This chapter reviews some exciting new techniques
for analyzing brain imaging data. We describe
computer algorithms that can discover patterns of
brain structure and function associated with
Alzheimer’s disease, schizophrenia, and normal and
abnormal brain development, based on imaging
data collected in large human populations.
Extraordinary patterns can be discovered with these
techniques: dynamic brain maps reveal how the
brain grows in childhood, and how it changes in
disease, or responds to medication. Genetic brain
maps reveal which aspects of brain structure are
inherited, shedding light on the nature/nurture
debate. They also identify deficit patterns in those at
genetic risk for disease. Probabilistic brain atlases
now store thousands of these brain maps, models,
and images, collected with an array of imaging
devices (MRI/fMRI, PET, 3D cryosection imaging,
histology). These atlases capture how the brain
varies with age, gender, demographics, and in
disease. They relate these variations to cognitive,
therapeutic, and genetic parameters. With the
appropriate computational tools, these atlases can
be stratified to create average maps of brain
structure in different diseases, revealing unsuspected
features. We describe the tools to interact with these
atlases. We also review some of the technical and
conceptual challenges in comparing brain data
across large populations, highlighting some key
neuroscience applications. 

The last few years has seen an explosion in the scope
and scale of brain imaging studies. Imaging
technology has rapidly advanced (see Fig. 1) and so
have the computational methods to analyze images.
Patterns of brain structure associated with the
major diseases of the brain can be visualized and
analyzed.  Brain changes over time can be tracked
with unprecedented sensitivity, shedding light on
development and disease. Dynamic effects of drug
treatment on the brain can also be mapped. In the
near future, a second revolution in our
understanding will come from the merging of large-
scale neuroimaging and large-scale genetic studies.
These advances will capitalize on sophisticated
techniques from both disciplines. 

We briefly describe a set of algorithms to detect and
visualize effects of disease and genetic factors on the
brain. We explain some of the processing steps that
occur in a typical neuroscience study, for creating
maps and models on the brain. Analysis steps that
were recently carried out only on high-performance
workstations are now within the reach of most
desktop computers. Nonetheless, some computer-
intensive analyses involve hundreds or even
thousands of subjects. For these, supercomputing
technology is increasingly used. Image processing
tasks can now be executed over high-speed
networks, using client-server pipelines, bringing the
power of parallel computers to a desktop machine.  

ABSTRACT INTRODUCTION
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FIGURE 1

Diversity of Brain Maps. Rapid advances in imaging technology have made it possible to create
comprehensive maps of brain structure and function, with a broad range of imaging devices, and at a
variety of spatial scales.  Maps of brain structure are typically based upon 3D tomographic images -
magnetic resonance images (MRI), computerized axial tomography (CAT) scans, or anatomic
specimens (cryo). A variety of histologic preparations (histo) can also reveal cytoarchitecture and
regional molecular content such as myelination patterns, receptor binding sites, protein densities and
mRNA distributions. Other brain maps have concentrated on function, quantified by positron emission
tomography (PET), functional MRI, optical intrinsic signal imaging (OIS) or electrophysiology.
Additional maps have been developed to represent neuronal connectivity and circuitry, based on
compilations of empirical evidence. This diverse array of phenotypes will ultimately be correlated with
changes in gene expression (bottom right).
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Some challenges in brain imaging are mathematical
and statistical as well. Brain structure is extremely
complex and variable across subjects. The cerebral
cortex, for example, is the target of most functional
and structural imaging studies. Nonetheless, gyral
patterning variations make it difficult to compare
brain data from one individual to another.
Neuroimaging studies now typically use
mathematics based on random field theory, partial
differential equations (PDEs), differential geometry
and image processing to encode anatomic or
functional variations in a subject group. This
disentangles structural and functional differences
from normal variations. Below we show some
examples where population-specific patterns of
cortical organization, asymmetry, and disease-
specific trends are resolved that are not apparent in
individual brain images.

The first step in most structural (or functional)
brain imaging analyses is to align individual brain
scans to match a standardized template of anatomy,
or brain atlas. 

BRAIN VARIATIONS ALIGNING DATA TO A BRAIN ATLAS



© 2002 Paul M. Thompson

Bioinformatics 200272

Brain atlases (e.g. [1,2,3]) provide a structural
framework in which individual brain maps can be
integrated. Most brain atlases are based on a
detailed representation of a single subject’s
anatomy in a standardized 3D coordinate system, or
stereotaxic space. The chosen data set acts as a
template on which other brain maps (such as
functional images) can be overlaid. The anatomic
data provides the additional detail necessary to
accurately localize activation sites, as well as
providing other structural perspectives such as
chemoarchitecture. Digital mapping of structural
and functional image data into a common 3D
coordinate space is a prerequisite for many types of
brain imaging research, as it supplies a quantitative
spatial reference system in which brain data from
multiple subjects and modalities can be compared
and correlated.

In atlases, spatial normalization systems are
typically employed to reference a given brain with
an atlas brain [1]. This allows individual data to be
superimposed on the data in the atlas - in other
words, to be transformed to match the space
occupied by the atlas. While stereotaxic methods
provide a common coordinate system for pooling
activation data and multi-subject comparisons, the
accuracy and utility of the atlas is equally dependent
on the anatomical template itself [4]. The Talairach
atlas was initially widely used in international brain
imaging studies. Designed as a coordinate based
reference system for neurosurgical studies, the
Talairach templates were based on post mortem
brain sections from a 60 year-old female subject.
This poorly reflects the in vivo anatomy of subjects
in activation studies. Atlas plates from orthogonal
planes were also inconsistent. To address these
limitations, a composite MRI dataset (see Fig. 2;
ICBM template) was constructed from young
normal subjects whose scans were individually
mapped into the Talairach system by linear
transformation, intensity normalized, and averaged
on a voxel-by-voxel basis [5]. This average intensity
template is part of the widely used Statistical
Parametric Mapping package (SPM; [6]).

Automated methods can be used to optimally align
new MR and PET data with this template (see Fig.
2, step 1). These tune the parameters of the
alignment transformation (typically rotations,
translations, scales, and shears) to maximize a
measure of intensity similarity between the scan
being aligned and the target. The similarity measure
is typically 3D cross-correlation [7], squared
intensity mismatch [8,9], or mutual information
[10,11]; (see [12], for practical differences in these
approaches). 

Any alignment defined for one modality, such as
MRI, can be identically applied to another modality,
such as PET, if a previous cross-modality
intrasubject registration has been performed [8]. 

BRAIN ATLASES
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FIGURE 2

Creating Brain Maps and Anatomical Models. An image analysis pipeline [12] is shown here. It can be
used to create maps that reveal how brain structure varies in large populations, differs in disease, and
is modulated by genetic or therapeutic factors. This approach aligns new 3D MRI scans from patients
and controls (1) with an average brain template based on a population (here the ICBM template is
used, developed by the International Consortium for Brain Mapping [5]). Tissue classification
algorithms then generate maps of gray matter, white matter and CSF (2). To help compare cortical
features from subjects whose anatomy differs, individual gyral patterns are flattened (3) and aligned
with a group average gyral pattern (4). If a color code indexing 3D cortical locations is flowed along
with the same deformation field (5), a crisp group average model of the cortex can be made (6),
relative to which individual gyral pattern differences (7), group variability (8) and cortical asymmetry
(9) can be computed. Once individual gyral patterns are aligned to the mean template, differences in
gray matter distribution or thickness (10) can be mapped, pooling data from homologous regions of
cortex. Correlations can be mapped between disease-related deficits and genetic risk factors (11).
Maps may also be generated visualizing linkages between deficits and clinical symptoms, cognitive
scores, and medication effects.   
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After aligning data into a stereotaxic coordinate
space, anatomical structures can be referred to in
standardized coordinates. Digital models of brain
structures can also be built, and their boundary
coordinates stored as a list of 3D locations in
stereotaxic space. These coordinates provide an
international standard for reporting imaging
findings, such as functional activation sites, or maps
of structural differences. However, even in
stereotaxic space, brain structures vary from one
individual to another in every metric: shape, size,
complexity, and orientations relative to one another.
To help understand this variation and resolve typical
anatomic patterns, it would be ideal if an average
representation of brain structure could be
developed for a particular subject group, such as
patients with dementia or schizophrenia. Normal
anatomic variations relative to this average could
then be encoded statistically, and used to map
regions of significant abnormality in disease.
Probabilistic brain atlases 

[2,14,15] perform this task. They store information
on individual differences, in a computational format
that reveals where variation is greatest and what
factors contribute to it. The process of encoding
these anatomic variations is described next. 

Consider the challenges in creating a typical, or
‘average’, model of brain structure. If the image
intensities of a group of subjects’ MRI scans are
averaged together, pixel-by-pixel, cortical features
are washed away due to anatomical variability in the
population (Fig. 3(a)). Fig. 3 illustrates a more
sophisticated method to create a well-resolved,
average template of anatomy (Fig. 3(b) and (c) show
an average brain template based on N=9
Alzheimer’s patients). Here group features are
reinforced in their mean anatomic locations ([16];
Fig. 3, panel 6). This method, based on a technique
called cortical pattern matching [17-20], can also
generate average maps of gyral pattern asymmetry,
and gray matter deficits a group, pinpointing
disease-specific patterns (Fig. 5). Importantly,
detailed information is retained on individual
variability (Fig. 4(c),(d)). This is useful for
understanding genetic influences on brain structure
(see later). We describe how these individual
differences are measured next. 

POPULATION-BASED ATLASES BRAIN AVERAGING
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FIGURE 3

Creating 3D Average Brain Templates for a Population. Before computing individual anatomical
differences, it is useful to create an average model of anatomy for a specific population. If MRI scans
from a group of subjects are mutually aligned and their intensities are averaged together pixel-by-pixel
[(a); [5]], cortical features are washed away. To retain these features in the group average [(b),(c)], a
procedure called cortical pattern matching can be used (see [15] for details). From each individual’s
MRI scan (d) a cortical model [(e),(f)] consisting of discrete triangular elements (g) is created and
flattened (panel 1), along with digital models of cortical sulci traced on the brain surface. A warping
field drives the flat map (1), and a color code indexing corresponding 3D cortical positions (3),(4), to
match an average set of flat 2D sulcal curves (2). If these color images are averaged across subjects
and decoded before cortical pattern matching (3), a smooth average cortex (5) is produced. If they are
warped first (4), averaged, and decoded, a crisp average cortex appears in which anatomical features
are reinforced and appear in their mean stereotaxic locations (6). Such cortical averages provide a
standard template relative to which individual differences may be measured (Fig. 4). Using warping (4),
cortical data can be transferred, from individuals whose anatomy is different, onto a common anatomic
template for comparison and integration.
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In high-quality MRI data (typically 1x1x1 mm image
resolution and good tissue contrast is required), it is
relatively easy to extract a 3D cortical surface model
(Fig. 3(e),(f )) from an individual subject’s scan (Fig.
3(d)). This represents their cortical surface anatomy
in detail (Fig. 3(g); triangulated mesh). A set of 38
sulcal curves (Fig. 3(e),(f )) is then manually traced,
representing each subject’s primary gyral pattern.
These curves are used as anchors to create a
deformation mapping (Fig. 3, panel 2), which
distorts the anatomy of one subject onto another,
matching sulcal features exactly. To compute this
mapping, cortical models and curves are first
flattened (Fig. 3, panel 1), and a flow field is
computed in the flattened space, to drive individual
sulcal features onto an average set of curves (panel
2). Using a mathematical trick, a color code
representing 3D locations of cortical points in each
subject (panel 3) is convected along with this flow
(panel 4). Then these warped color images are
averaged across subjects and decoded to produce a
crisp average cortical model for the group (panel 6). 

These deformation maps represent the complex
distortion required to match one cortex to a group
average (Fig. 4(a),(b)). They also store local
information on individual differences in gyral
patterns. In a normal population, the amount of
variability can be mapped by converting these
differences into local measures of variance (3D
r.m.s. deviation from the average anatomy). Gyral
pattern variation is found to be greatest in
perisylvian language-related cortices (red colors,
Fig. 4(c)). Directional biases in gyral pattern
variation can also be visualized (elongated
ellipsoids, Fig. 4(d)). Group features of anatomy
also emerge that are not apparent in individual
subjects. The atlas localizes a prominent asymmetry
in perisylvian cortices: right hemisphere structures
are, on average, torqued forward relative to their
counterparts on the left ([21]; see Fig. 4(e),(f )). 

CORTICAL PATTERN MATCHING AND

ANATOMICAL AVERAGING

MEASURING INDIVIDUAL BRAIN

DIFFERENCES
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FIGURE 4

Measuring Individual Brain Differences and Population Variability. When a individual brain (brown
mesh, (a)) is globally aligned and scaled to match a group average cortical model (white surface), a 3D
deformation is computed to match its gyral anatomy with the group average (pink colors: large
deformations, (b)). The 3D root mean square magnitude of these deformation vectors (variability map,
(c)) shows that gyral pattern variability is greatest in perisylvian language areas (red colors). 3D
confidence regions for gyral variations can be also stored locally to detect cortical abnormalities ((d),
[14]). Ellipsoids, (d), are elongated along directions in which normal variation is greatest; pink colors
denote greatest anatomic variation. Deformations that match the gyral anatomy of one hemisphere
with a reflected version of the opposite  hemisphere can be averaged across subjects to detect
anatomic asymmetries. These are greatest in perisylvian cortices (red colors, (e),(f); [13]; Geschwind
and Levitsky [21] first observed this feature in a volumetric study). All these maps provide detailed
structural phenotypes that can be mined for genetic influences. The maps shown here are based on a
group of 20 healthy elderly subjects, but can be recomputed for any population.
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Among the structural features that are genetically
regulated and have implications for cortical function
is the distribution of gray matter across the cortex.
This varies widely across normal individuals, with
developmental waves of gray matter gain and loss
subsiding by adulthood [22,23]. Complex deficit
patterns are observed in Alzheimer’s disease,
schizophrenia [24,13], and healthy subjects at
genetic risk for these disorders [25]. Figure 3 shows
the average profile of gray matter deficits in early
Alzheimer’s disease, based on MRI data from 26 AD
patients and 20 healthy controls. To produce these
maps, a tissue classifier creates maps of gray matter
(green colors, Fig. 5(a)) in each subject. This type of
algorithm separates the voxels of an MRI scan into
gray matter, white matter, and CSF, and a
background (non-brain) class, typically by
computing parameters of their intensity
distributions. Rather than compute cortical
thickness, which is extremely difficult in MRI data, a
related measure, termed ‘gray matter density’ is
more commonly used [26,24,9]. This describes the
proportion of pixels segmenting as gray matter in a
small spherical region around each cortical point.
By storing individual variations in gray matter
density at each cortical point, differences between
the diseased group and the healthy control group
can be expressed as a percentage deficit, or as a
significance map (Fig. 5(c)). Significance maps
report the results of a statistical test, assessing the
evidence for a group difference, at each cortical
point; they plot these results in color as a color-
coded map. An advantage of this approach relative
to volumetric studies is the ability to localize effects
on brain structure in the form of a map. When
trying to detect systematic effects on brain
structure, cortical pattern matching also increases
signal to noise by associating gray matter measures
from corresponding cortical regions; this also
adjusts for shape changes in longitudinal studies
(Fig. 5(d),(e)). In the resulting maps, regions of
comparatively spared tissue may appear sharply
delimited from regions with 
ignificant loss (Fig. 5(b)) or progressive loss (Fig.
5(d),(e)).

Specialized methods have also been developed to
assess how genes and environment affect brain
function. Typically the goal is to shed light on the
mechanism and transmission of disease, or to help
understand the effects of genes and environmental
factors on cognitive skills and behavior. Brain
mapping methods to assess individual differences
can also be applied to help test behavioral genetic
models of individual variation. Rather than display
statistics that describe the significance of disease
effects on brain structure, genetic models typically
describe the proportion of variability in brain
structure that is due to genetic factors,
environmental factors, or their interaction (see [27]
for a review). Estimated model parameters, their
error variance, and their goodness of fit (e.g. c2)
may also be displayed as color-coded maps, as well
as simpler measures of intraclass correlations and
heritability coefficients, which are described next. 

GRAY MATTER DIFFERENCES GENETIC INFLUENCES ON BRAIN STRUCTURE
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FIGURE 5

Mapping Gray Matter Deficits in a Population. Measures of gray matter (a) can be computed from
MRI scans and compared across individuals and groups. Data from corresponding cortical regions are
compared using cortical pattern matching (Fig. 3). Patients with mild to moderate Alzheimer’s disease
show a severe loss of gray matter [(b),(c)] relative to matched healthy controls, especially in temporal
cortices (where deficits approach 30% locally – red colors). Patients with childhood onset schizophrenia
show a progressive loss of gray matter, especially in temporal and superior frontal cortices [(d),(e)].
These structural measures are tightly correlated with worsening symptoms [18,28], offering a
promising endophenotype (biological marker) for genetic studies. These biological markers are likely to
be more directly influenced by genes coding for structural proteins, regulatory elements, and signaling
molecules, than clinical symptoms, such as hallucinations or disordered thinking.
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0.95). Many regions are under tight genetic control
(bilateral frontal and sensorimotor regions,
p<0.0001; Fig. 6; right column), and heritability
estimates are comparable with twin-based estimates
for the most highly genetically-determined human
traits, including fingerprint ridge count (h2=0.98),
height (h2=0.66-0.92), and systolic blood pressure
(h2=0.57).

GENETIC BRAIN MAPS

Fig. 6 shows the intraclass correlations in gray
matter (Fig. 6, left columns) in groups of
monozygotic (MZ) and dizygotic (DZ) twins. Note
that this type of map captures individual differences.
In a sense it is the opposite of the group average
maps, which map patterns that characterize a group
overall. These maps were computed as part of a
study to determine genetic influences on brain
structure [29,27,30]. Genetic influences on any trait
are typically estimated by measuring similarities
among relatives with different degrees of genetic
affinity. Here the measured trait is gray matter
distribution, but the methods are the same as those
for estimating the heritability of height, weight, or a
particular disease such as schizophrenia or autism.
In the classical twin design, a feature is regarded as
heritable if it shows a genetic cascade in which
within-pair correlations (typically called intraclass
correlations, or ICCs) are higher for pairs of MZ
twins (who share all their genes, except for rare
somatic mutations), and lower for same-sex DZ
twin pairs (who on average share half their genes).
Falconer’s method [31] computes heritability as
twice the difference between these correlations.
High values, near 1.0, are found for the most
genetically determined traits, and near-zero values
for traits that are unaffected by individual genetic
differences. MZ within-pair gray matter differences
are almost zero (intraclass r~0.9 and higher,
p<0.0001 corrected; Fig. 6, left column) in a broad
anatomical band encompassing frontal,
sensorimotor and linguistic cortices, including
Broca’s speech and Wernicke’s language
comprehension areas. Since MZ twins are
genetically identical (except for rare somatic
mutations), any regional differences are attributed
to environmental effects or gene-environment
interactions. The maps show how sensorimotor and
parietal occipital, but not frontal, territory is
significantly more similar in DZ twins than random
pairs. Affinity is greatest in the MZ pairs, suggesting
a genetic continuum in the determination of
structure. Middle frontal regions, in the vicinity of
Brodmann areas 9 and 46, displayed a 90-95%
genetic determination of structure (i.e., h2 ~ 0.90-
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PERMUTATION TESTING

The significance of these statistical genetic brain
maps, and the previous maps of disease effects, is
typically assessed using either parametric or
nonparametric methods. In each case appropriate
adjustments must be made for multiple
comparisons, as is conventional in functional brain
imaging (see [12] for current approaches). These
adjustments note that thousands of statistical tests
are performed at different points on the brain
surface, but they are certainly not independent tests,
as their results are highly spatially correlated.
Typically, to assess whether an observed pattern of

FIGURE 6

Mapping Genetic Influences on Brain Structure: Heritability Maps. Color-coded maps (left columns)
show local gray matter correlations between MZ and DZ twins. Falconer’s heritability formula [31] is
applied to data from corresponding cortical regions (within and across twin pairs). The resulting value
of h2, and its significance (lower right panel) is plotted at each cortical point. Note the significant
genetic control in an anatomical band encompassing parietal, sensorimotor, and frontal cortices. 

statistics or significance values could have occurred
by accident, a Monte Carlo simulation is run in
which subjects are randomly assigned to groups. A
null distribution is then assessed for the statistic of
interest, and the chance of accidentally finding the
pattern that occurred in the experiment is assessed
[12]. These operations are computer-intensive, and
their power is not optimal. The development of
analytical formulas for statistical distributions on
manifolds is therefore an active topic of research,
and is likely to empower future brain mapping
studies [12,32].
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Everyone’s brain shrinks with age, and not in a
uniform way. Diseases such as Alzheimer’s cause
changes in the overall rates, and patterns, of brain
change. Population-based atlases can store key
statistics on the rates of these brain changes. These
are especially relevant to the understanding of
development [33] as well as relapsing-remitting
diseases such as multiple sclerosis and tumor
growth [34,35]. They also provide normative criteria
for early brain change in patients with dementia
[36,37,13], with mild cognitive impairment [38], or
in those at genetic risk for Alzheimer’s disease [39].
An interesting application is the compilation of
dynamic maps to characterize brain growth in
development or degenerative change, which we
illustrate next.

Maps of brain change over time can be created
based on a deformation mapping concept. In this
approach, a 3D elastic deformation is calculated
(Fig. 7). This deformation, or warping field, drives
an image of a subject’s anatomy at a baseline
timepoint to match its shape in a later scan. Dilation
and contraction rates, and even the principal
directions of growth, are derived by examining the
eigenvectors of the deformation gradient tensor, or
the local Jacobian matrix of the transform that maps
the earlier anatomy onto the later one. Applications
include the mapping of brain growth patterns in
children [40], measuring tumor response to novel
chemotherapy agents [34], and the mapping of
degenerative rates in Alzheimer’s disease (Fig. 7). By
building probability densities on registered tensor
fields (e.g. [40]), a quantitative framework can be
used to detect normal and aberrant brain change,
and how medication affects these changes in clinical
trials (see [16] for a review).

TENSOR MAPS OF BRAIN CHANGEDYNAMIC BRAIN MAPS
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CONCLUSION

FIGURE 7

Tensor Maps of Brain Change: Visualizing Growth and Atrophy. If follow-up (longitudinal) images are
available, the dynamics of brain change can be measured with tensor mapping approaches [40]. These
map volumetric change at a local level, and show local rates of tissue growth or loss. Fastest growth is
detected in the isthmus of the corpus callosum in two young girls identically scanned at ages 6 and 7
(a), and at ages 9 and 13 (b). Maps of loss rates in tissue can be generated for the developing caudate
((c), here in a 7-11 year old child), and for the degenerating hippocampus [(d),(e)]. In (e), a female
patient with mild Alzheimer’s disease was imaged at the beginning and end of a 19 month interval with
high-resolution MRI. The patient, aged 74.5 years at first scan, exhibits faster tissue loss rates in the
hippocampal head (10% per year, during this interval) than in the fornix. These maps can help
elucidate the dynamics of therapeutic response in an individual or a population [18,34]. 

There are numerous implementations and
applications of brain maps to study morphology.
Each new approach in brain morphology has the
capacity to measure, visualize, compare and
summarize brain images. There are many varieties,
from descriptions of structure to function of the
whole brain to maps of groups or populations.
Maps enable comparison across individuals,
modalities or states. While dependent upon

appropriate coordinate systems, deformation
methods and visualization strategies, accurate and
representative brain maps hold enormous promise
for helping to create a comprehensive
understanding of brain in health and disease. The
merger of methods from imaging and genetics is
likely to expedite a second revolution in our
understanding of the brain. 
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