REFERENCES
1. Dvorák, K., and Feit, J. 1977. Migration of neuroblasts through partial necrosis of the cerebral cortex in newborn rats—Contribution to the problems of morphological development and developmental period of cerebral microgyria. Acta Neuropathol. (Berl.) 38:203–212.
2. Dvorák, K., Feit, J., and Juránková, Z. 1978. Experimentally induced focal microgyria and status verrucosus deformis in rats—Pathogenesis and interrelation histological and autoradiographical study. Acta Neuropathol. (Berl.) 44:121–129.
3. Humphreys, P., Rosen, G.D., Press, D.M., Sherman, G.F., and Galaburda, A.M. 1991. Freezing lesions of the newborn rat brain: A model for cerebrocortical microgyria. J. Neuropath. Exp. Neurol. 50:145-160.
4. Rosen, G.D., Press, D.M., Sherman, G.F., and Galaburda, A.M. 1992. The development of induced cerebrocortical microgyria in the rat. J. Neuropath. Exp. Neurol. 51:601-611.
5. Ferrer, I., Alcántara, S., Catala, I., and Zujar, M.J. 1993. Experimentally induced laminar necrosis, status verrucosus, focal cortical dysplasia reminiscent of microgyria, and porencephaly in the rat. Exp. Brain Res. 94:261–269.
6. Jacobs, K.M., Gutnick, M.J., and Prince, D.A. 1996. Hyperexcitability in a model of cortical maldevelopment. Cereb. Cort. 6:514-523.
7. Luhmann, H.J., and Raabe, K. 1996. Characterization of neuronal migration disorders in neocortical structures .1. Expression of epileptiform activity in an animal model. Epilepsy Res 26:67–74.
8. Suzuki, M., and Choi, B.H. 1991. Repair and reconstruction of the cortical plate following closed cryogenic injury to the neonatal rat cerebrum. Acta Neuropathol. (Berl) 82:93–101.
9. Innocenti, G.M., and Berbel, P. 1991. Analysis of an experimental cortical network: i) Architectonics of visual areas 17 and 18 after neonatal injections of ibotenic acid; similarities with human microgyria. J. Neur. Transplant. 2:1–28.
10. Marret, S., Mukendi, R., Gadisseux, J., Gressens, P., and Evrard, P. 1995. Effect of ibotenate on brain development: An excitotoxic mouse model of microgyria and postthypoxic-like lesions. J. Neuropath. Exp. Neurol. 54:358–370.
11. Luhmann, H.J., Raabe, K., Qu, M., and Zilles, K. 1998. Characterization of neuronal migration disorders in neocortical structures: extracellular in vitro recordings. Eur. J. Neurosci. 10:3085–94.
12. Zilles, K., Qu, M., Schleicher, A., and Luhmann, H.J. 1998. Characterization of neuronal migration disorders in neocortical structures: quantitative receptor autoradiography of ionotropic glutamate, GABA(A) and GABA(B) receptors. Eur. J. Neurosci. 10:3095–106.
13. Fitch, R.H., Tallal, P., Brown, C., Galaburda, A.M., and Rosen, G.D. 1994. Induced microgyria and auditory temporal processing in rats: A model for language impairment? Cereb. Cortex 4:260–270.
14. Fitch, R.H., Brown, C.P., Tallal, P., and Rosen, G.D. 1997. Effects of sex and MK-801 on auditory-processing deficits associated with developmental microgyric lesions in rats. Behav. Neurosci. 111:404–412.
15. Herman, A.E., Galaburda, A.M., Fitch, H.R., Carter, A.R., and Rosen, G.D. 1997. Cerebral microgyria, thalamic cell size and auditory temporal processing in male and female rats. Cereb. Cort. 7:453–464.
16. Ferrer, I., Pineda, M., Tallada, M., Oliver, B., Russi, A., Oller, L., Noboa, R., Zœjar, M.J., and Alcántara, S. 1992. Abnormal local-circuit neurons in epilepsia partialis continua associated with focal cortical dysplasia. Acta Neuropathol. (Berl.) 83:647–652.
17. Williams, R.W., and Rakic, P. 1988. Three-dimensional counting: An accurate and direct method to estimate numbers of cells in sectioned material. J. Comp. Neurol. 278:344–352.
18. Rosen, G.D., Sherman, G.F., and Galaburda, A.M. 1996. Birthdates of neurons in induced microgyria. Brain Res. 727:71–78.
19. Zilles, K. 1985. The Cortex of the Rat: A Stereotaxic Atlas. Pages 121, Springer-Verlag, Berlin.
20. Sanchez, M.P., Frassoni, C., Alvarezbolado, G., Spreafico, R., and Fairen, A. 1992. Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: An immunocytochemical study. J. Neurocytol. 21:717–736.
21. Soriano, E., Del Rio, J.A., Ferrer, I., Auladell, C., De Lecea, L., and Alcantara, S. 1992. Late appearance of parvalbumin-immunoreactive neurons in the rodent cerebral cortex does not follow an inside-out sequence. Neurosci. Lett. 142:147–150.
22. Denenberg, V.H. 1979. Analysis of variance procedures for estimating reliability and comparing individual subjects. Pages 339–348 in Thoman, E., Ed., Origins of the InfantŐs Social Responsiveness. L. Erlbaum Assoc., Hillsdale, NJ.
23. Ren, J.Q., Aika, Y., Heizmann, C.W., and Kosaka, T. 1992. Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp. Brain Res. 92:1–14.
24. Solbach, S., and Celio, M.R. 1991. Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat. Embryol. 184:103–124.
25. Hendry, S.H., and Jones, E.G. 1986. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 320:750–3.
26. Welker, E., Soriano, E., and Van der Loos, H. 1989. Plasticity in the barrel cortex of the adult mouse: Effects of peripheral deprivation on GAD-immunoreactivity. Exp. Brain. Res. 74:441–52.
27. Akhtar, N.D., and Land, P.W. 1991. Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation. J. Comp. Neurol. 307:200–13.
28. Micheva, K.D., and Beaulieu, C. 1995. Neonatal sensory deprivation induces selective changes in the quantitative distribution of GABA-immunoreactive neurons in the rat barrel field cortex. J. Comp. Neurol. 361:574–84.
29. Carder, R.K., Leclerc, S.S., and Hendry, S.H. 1996. Regulation of calcium-binding protein immunoreactivity in GABA neurons of macaque primary visual cortex. Cereb. Cortex 6:271–87.
30. Welker, E., Soriano, E., Dorfl, J., and Van der Loos, H. 1989. Plasticity in the barrel cortex of the adult mouse: Transient increase of GAD-immunoreactivity following sensory stimulation. Exp. Brain. Res. 78:659–64.
31. Rosen GD, Burstein D, Galaburda AM: Changes in efferent and afferent connectivity in rats with cerebrocortical microgyria. The Journal of Comparative Neurology 2000, 418:423–440.

32. Innocenti, G.M., and Berbel, P. 1991. Analysis of an experimental cortical network: ii) Connections of visual areas 17 and 18 after neonatal injections of ibotenic acid. J. Neur. Transplant. 2:29–54.
33. Sharkey, M.A., Lund, R.D., and Dom, R.M. 1986. Maintenance of transient occipitospinal axons in the rat. Brain Res. 395:257–61.
34. Alcantara, S., Soriano, E., and Ferrer, I. 1996. Thalamic and basal forebrain afferents modulate the development of parvalbumin and calbindin d28k immunoreactivity in the barrel cortex of the rat. Eur. J. Neurosci. 8:1522–1534.
35. Alcantara, S., de Lecea, L., Del Rio, J.A., Ferrer, I., and Soriano, E. 1996. Transient colocalization of parvalbumin and calbindin D28k in the postnatal cerebral cortex: evidence for a phenotypic shift in developing nonpyramidal neurons. Eur. J. Neurosci. 8:1329–39.
36. Alcantara, S., Ferrer, I., and Soriano, E. 1993. Postnatal development of parvalbumin and calbindin d28K immunoreactivities in the cerebral cortex of the rat. Anat. Embryol. 188:63–73.
37. Chagnac-Amitai, Y., and Connors, B.W. 1989. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J. Neurophysiol. 61:747–58.
38. Jacobs, K.M., Huguenard, J.R., and Prince, D.A. 1996. Inhibitory currents in a developmental model of epilepsy. Soc. Neurosci. Abstr. 22:2102.
39. Jacobs, K.M., Mogensen, M., Warren, L., and Prince, D.A. 1997. Experimental microgyri disrupt cytochrome oxidase-identified barrel formation in rat somatosensory cortex. Soc. Neurosci. Abstr. 23:811.
40. Salin, P., Tseng, G.F., Hoffman, S., Parada, I., and Prince, D.A. 1995. Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex. J. Neurosci. 15:8234–45.
41. Prince, D.A., and Connors, B.W. 1986. Mechanisms of interictal epileptogenesis. Adv. Neurol. 44:275–99.
42. Wong, R.K., Traub, R.D., and Miles, R. 1986. Cellular basis of neuronal synchrony in epilepsy. Adv. Neurol. 44:583–92.
43. Finlay, B.L., Wilson, K.G., and Schneider, G.E. 1979. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity. J. Comp. Neurol. 183:721–740.
44. Schneider, G.B. 1976. Immunological competence in Snell-Bagg pituitary dwarf mice: Response to the contact-sensitizing agent oxazolone. Am. J. Anat. 145:371–394.
45. Schneider, G.E. 1979. Is it really better to have your brain lesion early? A revision of the "Kennard principle". Neuropsychologia 17:557–583.
46. Schneider, G.E. 1981. Early lesions and abnormal neuronal connections. Trends Neurosci. 4:187–192.
47. Nicolelis, M.A.L., Chapin, J.K., and Lin, R.C.S. 1991. Neonatal whisker removal in rats stabilizes a transient projection from the auditory thalamus to the primary somatosensory cortex. Brain Res. 567:133–139.
48. Grigonis, A.M., and Murphy, E.H. 1991. Organization of callosal connections in the visual cortex of the rabbit following neonatal enucleation, dark rearing, and strobe rearing. J. Comp. Neurol. 312:561–72.
49. Miller, B., Nagy, D., Finlay, B.L., Chance, B., Kobayashi, A., and Nioka, S. 1993. Consequences of reduced cerebral blood flow in brain development. I. Gross morphology, histology, and callosal connectivity. Exp. Neurol. 124:326–42.
50. Rosen, G.D., Sherman, G.F., and Galaburda, A.M. 1989. Cerebrocortical microdysgenesis with anomalous callosal connections: A case study in the rat. Int. J. Neurosci. 47:237–247.