REFERENCES

1. Herman, A. E., A. M. Galaburda, H. R. Fitch, A. R. Carter, and G. D. Rosen. 1997. Cerebral microgyria, thalamic cell size and auditory temporal processing in male and female rats. Cereb. Cort. 7:453–464.

2. Dvorák, K., and J. Feit. 1977. Migration of neuroblasts through partial necrosis of the cerebral cortex in newborn rats—contribution to the problems of morphological development and developmental period of cerebral microgyria. Acta Neuropathol. (Berl.) 38:203–212.

3. Dvorák, K., J. Feit, and Z. Juránková. 1978. Experimentally induced focal microgyria and status verrucosus deformis in rats—Pathogenesis and interrelation histological and autoradiographical study. Acta Neuropathol. (Berl.) 44:121–129.

4. Humphreys, P., G. D. Rosen, D. M. Press, G. F. Sherman, and A. M. Galaburda. 1991. Freezing lesions of the newborn rat brain: A model for cerebrocortical microgyria. J. Neuropath. Exp. Neurol. 50:145–160.

5. Rosen, G. D., D. M. Press, G. F. Sherman, and A. M. Galaburda. 1992. The development of induced cerebrocortical microgyria in the rat. J. Neuropath. Exp. Neurol. 51:601–611.

6. Suzuki, M., and B. H. Choi. 1991. Repair and reconstruction of the cortical plate following closed cryogenic injury to the neonatal rat cerebrum. Acta Neuropathol. (Berl) 82:93–101.

7. Jacobs, K. M., M. J. Gutnick, and D. A. Prince. 1996. Hyperexcitability in a model of cortical maldevelopment. Cereb. Cort. 6:514–523.

8. Luhmann, H. J., and K. Raabe. 1996. Characterization of neuronal migration disorders in neocortical structures .1. Expression of epileptiform activity in an animal model. Epilepsy Res 26:67–74.

9. Marret, S., R. Mukendi, J. Gadisseux, P. Gressens, and P. Evrard. 1995. Effect of ibotenate on brain development: An excitotoxic mouse model of microgyria and postthypoxic-like lesions. J. Neuropath. Exp. Neurol. 54:358–370.

10. Innocenti, G. M., and P. Berbel. 1991. Analysis of an experimental cortical network: i) Architectonics of visual areas 17 and 18 after neonatal injections of ibotenic acid; similarities with human microgyria. J. Neur. Transplant. 2:1–28.

11. Ferrer, I., S. Alcantara, and E. Marti. 1993. A 4-layered lissencephalic cortex induced by prenatal x-irradiation in the rat. Neuropathol. Appl. Neurobiol. 19:74–81.

12. Rosen, G. D., N. S. Waters, A. M. Galaburda, and V. H. Denenberg. 1995. Behavioral consequences of neonatal injury of the neocortex. Brain Res. 681:177–189.

13. Sherman, G. F., L. Morrison, G. D. Rosen, P. O. Behan, and A. M. Galaburda. 1990. Brain abnormalities in immune defective mice. Brain Res. 532:25–33.

14. Schrott, L. M., V. H. Denenberg, G. F. Sherman, N. S. Waters, G. D. Rosen, and A. M. Galaburda. 1992. Environmental enrichment, neocortical ectopias, and behavior in the autoimmune NZB mouse. Dev. Brain Res. 67:85–93.

15. Boehm, G. W., G. F. Sherman, B. J. Hoplight, L. A. Hyde, N. S. Waters, D. M. Bradway, A. M. Galaburda, and V. H. Denenberg. 1996. Learning and memory in the autoimmune BXSB mouse: Effects of neocortical ectopias and environmental enrichment. Brain Res. 726:11–22.

16. Fitch, R. H., C. P. Brown, P. Tallal, and G. D. Rosen. 1997. Effects of sex and MK-801 on auditory-processing deficits associated with developmental microgyric lesions in rats. Behav. Neurosci. 111:404–412.

17. Fitch, R. H., P. Tallal, C. Brown, A. M. Galaburda, and G. D. Rosen. 1994. Induced microgyria and auditory temporal processing in rats: A model for language impairment? Cereb. Cortex 4:260–270.

18. Gundersen, H. J. G., and E. B. Jensen. 1987. The efficiency of systematic sampling in stereology and its prediction. J. Microscop. 147:229–263.

19. Rosen, G. D., and J. D. Harry. 1990. Brain volume estimation from serial section measurements: A comparison of methodologies. J. Neurosci. Meth. 35:115–124.

20. Zilles, K. 1985. The Cortex of the Rat: A Stereotaxic Atlas. Pages 121, Springer-Verlag, Berlin.

21. Williams, R. W., and P. Rakic. 1988. Three-dimensional counting: An accurate and direct method to estimate numbers of cells in sectioned material. J. Comp. Neurol. 278:344–352.

22. Winer, J. A. 1991. Anatomy of the medial geniculate body. Pages 293–333 in Altschuler, R. A., D. W. Hoffman, R. P. Bobbin, and B. M. Clopton, Ed., Neurobiology of Hearing: The Central Auditory System. Raven Press, Ltd., New York.

23. MacLusky, N. J., and F. Naftolin. 1981. Sexual differentiation of the central nervous system. Science 211:1294–1303.

24. Pomerantz, S. M., T. O. Fox, S. A. Sholl, C. C. Vito, and R. W. Goy. 1985. Androgen and estrogen receptors in fetal rhesus monkey brain and anterior pituitary. Endocrinology 116:83–9.

25. Garcia-Estrada, J., J. A. Del Rio, S. Luquin, E. Soriano, and L. M. Garcia-Segura. 1993. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res. 628:271–8.

26. Yu, W. H. 1989. Administration of testosterone attenuates neuronal loss following axotomy in the brain-stem motor nuclei of female rats. J Neurosci 9:3908–14.

27. Roof, R. L., R. Duvdevani, and D. G. Stein. 1993. Gender influences outcome of brain injury: Progesterone plays a protective role. Brain Res. 607:333–336.

28. Roof, R. L., R. Duvdevani, and D. G. Stein. 1992. Progesterone treatment attentuates brain edema following contusion injury in male and female rats. Restorative Neurology and Neuroscience 4:425–427.

29. Ogata, T., Y. Nakamura, K. Tsuji, T. Shibata, and K. Kataoka. 1993. Steroid hormones protect spinal cord neurons from glutamate toxicity. Neuroscience 55:445–9.

30. Hall, E. D., K. E. Pazara, and K. L. Linseman. 1991. Sex differences in postischemic neuronal necrosis in gerbils. J. Cereb. Blood Flow Metab. 11:292–298.

31. Rosen, G. D., E. A. Sigel, G. F. Sherman, and A. M. Galaburda. 1995. The neuroprotective effects of MK-801 on the induction of microgyria by freezing injury to the newborn rat neocortex. Neuroscience 69:107–114.

32. Finlay, B. L., K. G. Wilson, and G. E. Schneider. 1979. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity. J. Comp. Neurol. 183:721–740.

33. Schneider, G. E. 1979. Is it really better to have your brain lesion early? A revision of the "Kennard principle". Neuropsychologia 17:557–583.

34. Schneider, G. E. 1981. Early lesions and abnormal neuronal connections. Trends Neurosci. 4:187–192.

35. Innocenti, G. M., and P. Berbel. 1991. Analysis of an experimental cortical network: ii) Connections of visual areas 17 and 18 after neonatal injections of ibotenic acid. J. Neur. Transplant. 2:29–54.

36. Nicolelis, M. A. L., J. K. Chapin, and R. C. S. Lin. 1991. Neonatal whisker removal in rats stabilizes a transient projection from the auditory thalamus to the primary somatosensory cortex. Brain Res. 567:133–139.

37. Miller, B., D. Nagy, B. L. Finlay, B. Chance, A. Kobayashi, and S. Nioka. 1993. Consequences of reduced cerebral blood flow in brain development. I. Gross Morphology, histology, and callosal connectivity. Exp. Neurol. 124:326–42.

38. Rosen, G. D., A. M. Galaburda, and G. F. Sherman. 1989. Cerebrocortical microdysgenesis with anomalous callosal connections: A case study in the rat. Int. J. Neurosci. 47:237–247.

39. Raz, S., M. D. Lauterbach, T. L. Hopkins, B. K. Glogowski, and C. L. Porter. 1995. A female advantage in cognitive recovery from early cerebral insult. Dev. Psychol. 31:958–966.

40. Kolb, B., and J. Stewart. 1995. Changes in the neonatal gonadal hormonal environment prevent behavioral sparing and alter cortical morphogenesis after early frontal cortex lesions in male and female rats. Behav. Neurosci. 109:285–294.

41. Goldman, P. S., H. T. Crawford, L. P. Stokes, T. W. Galkin, and H. E. Rosvold. 1974. Sex-dependent behavioral effects of cerebral cortical lesions in the developing rhesus monkey. Science 186:540–2.

42. Clark, A. S., and P. S. Goldman-Rakic. 1989. Gonadal hormones influence the emergence of cortical function in nonhuman primates. Behav. Neurosci. 103:1287–1295.

43. Garcia-Segura, L. M., J. A. Chowen, A. Parducz, and F. Naftolin. 1994. Gonadal hormones as promoters of structural synaptic plasticity: cellular mechanisms. Prog Neurobiol 44:279–307.

44. Toran-Allerand, C. D. 1991. Organotypic culture of the developing cerebral cortex and hypothalamus: relevance to sexual differentiation. Psychoneuroendocrinology 16:7–24.

45. Ferreira, A., and A. Caceres. 1991. Estrogen-enhanced neurite growth: evidence for a selective induction of Tau and stable microtubules. J Neurosci 11:392–400.

46. Hammer, R. P., and C. D. Jacobson. 1984. Sex differences in dendritic development of the sexually dimorphic nucleus of the preoptic area in the rat. Int. J. Develop. Neurosci. 2:77–96.

47. Nichizuka, M., and Y. Arai. 1982. Synapse formation in response to estrogen in the medial amygdala developing in the eye. Proc. Natl. Acad. Sci. (USA) 79:7024–7026.

48. Barde, Y. A. 1990. The nerve growth factor family. Prog Growth Factor Res 2:237–48.

49. Barde, Y.-A. 1989. Trophic factors and neuronal survival. 2:1525–1534.

50. Toran-Allerand, C. D. 1996. Mechanisms of estrogen action during neural development: mediation by interactions with the neurotrophins and their receptors? J Steroid Biochem Mol Biol 56:169–78.

51. Toran-Allerand, C. D., R. C. Miranda, W. D. Bentham, F. Sohrabji, T. J. Brown, R. B. Hochberg, and N. J. MacLusky. 1992. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc Natl Acad Sci U S A 89:4668–72.

52. Miranda, R. C., F. Sohrabji, and C. D. Toran-Allerand. 1993. Neuronal colocalization of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions. Proc Natl Acad Sci U S A 90:6439–43.

53. Miranda, R. C., F. Sohrabji, and C. D. Toran-Allerand. 1993. Estrogen target neurons co-localize the mRNAs for the neurotrophins and their receptors during development: A basis for the interactions of estrogen and the neurotrophins. Mol. Cell. Neurosci. 4:510–525.

54. Cherry, J. A., S. A. Tobet, T. J. DeVoogd, and M. J. Baum. 1992. Effects of sex and androgen treatment on dendritic dimensions of neurons in the sexually dimorphic preoptic/anterior hypothalamic area of male and female ferrets. J. Comp. Neurol. 323:577–85.