1. Schneider, G.E. 1981. Early lesions and abnormal neuronal connections. Trends Neurosci. 4:187–192.
2. Schneider, G.E. 1979. Is it really better to have your brain lesion early? A revision of the "Kennard principle". Neuropsychologia 17:557–583.
3. Finlay, B.L., Wilson, K.G., and Schneider, G.E. 1979. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity. J. Comp. Neurol. 183:721–740.
4. Goldman-Rakic, P.S., and Rakic, P. 1984. Experimentally modified convolutional patterns in nonhuman primates: Possible relevance of connections to cerebral dominance in humans. Pages 179–192 in Geschwind, N., and Galaburda, A.M., Ed., Biological Foundations of Cerebral Dominance. Harvard University Press, Cambridge, Massachusetts.
5. Goldman, P.S., and Galkin, T.W. 1978. Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res. 152:451–485.
6. D’Arcangelo, Miao, G., Chen, C., Soares, H., Morgan, I., and Curran, T. 1995. Protein related to extracellular—matrix proteins deleted—the mouse mutant reeler. Nature 374:719–23.
7. Caviness, V.S., Jr. 1976. Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse. J. Comp. Neurol. 170:435–448.
8. Caviness, V.S., Jr., and Yorke, C.H., Jr. 1976. Interhemispheric neocortical connections of the corpus callosum in the reeler mutant mouse: a study based on anterograde and retrograde methods. J. Comp. Neurol. 170:449–460.
9. Caviness, V.S., Jr. 1982. Neocortical histogenesis and reeler mice: A developmental study based upon [3H]thymidine autoradiography. Dev. Brain Res. 4:293–302.
10. Caviness, V.S., Jr., and Frost, D.O. 1983. Thalamocortical projections in the reeler mutant mouse. J. Comp. Neurol. 219:182–202.
11. Goffinet, A.M., So, K.-F., Yamamoto, M., Edwards, M., and Caviness, V.S., Jr. 1984. Architectonic and hodological organization of the cerebellum in reeler mutant mice. Dev. Brain Res. 16:263–276.
12. Frost, D.O., Edwards, M.A., Sachs, G.M., and Caviness, V.S., Jr. 1986. Retinotectal projection in reeler mutant mice: relationships among axon trajectories, arborization patterns and cytoarchitecture. Dev. Brain Res. 28:109–120.
13. Lee, K.S., Schottler, F., Collins, J.L., Lanzino, G., Couture, D., Rao, A., Hiramatsu, K., Goto, Y., Hong, S.C., Caner, H., Yamamoto, H., Chen, Z.F., Bertram, E., Berr, S., Omary, R., Scrable, H., Jackson, T., Goble, J., and Eisenman, L. 1997. A genetic animal model of human neocortical heterotopia associated with seizures. J. Neurosci. 17:6236–42.
14. Lee, K.S., Collins, J.L., Anzivino, M.J., Frankel, E.A., and Schottler, F. 1998. Heterotopic neurogenesis in a rat with cortical heterotopia. J. Neurosci. 18:9365–75.
15. Schottler, F., Couture, D., Rao, A., Kahn, H., and Lee, K.S. 1998. Subcortical connections of normotopic and heterotopic neurons in sensory and motor cortices of the tish mutant rat. J. Comp. Neurol. 395:29–42.
16. Singh, S.C. 1977. Ectopic neurones in the hippocampus of the postnatal rat exposed to methylazoxymethanol during foetal development. Acta Neuropathol (Berl) 40:111–116.
17. Johnston, M.V., and Coyle, J.T. 1979. Histological and neurochemical effects of fetal treatment with methylazoxymethanol on rat neocortex in adulthood. Brain Res. 170:135–155.
18. Dambska, M., Haddad, R., Kozlowski, P.B., Lee, M.H., and Shek, J. 1982. Telencephalic cytoarchitectonics in the brains of rats with graded degrees of micrencephaly. Acta Neuropathol. 58:203–209.
19. Baraban, S.C., and Schwartzkroin, P.A. 1996. Flurothyl seizure susceptibility in rats following prenatal methylazoxymethanol treatment. Epilepsy Res. 23:189–94.
20. Chevassus-au-Louis, N., Ben-Ari, Y., and Vergnes, M. 1998. Decreased seizure threshold and more rapid rate of kindling in rats with cortical malformation induced by prenatal treatment with methylazoxymethanol. Brain Res. 812:252–5.
21. Rafiki, A., Chevassus-au-Louis, N., Ben-Ari, Y., Khrestchatisky, M., and Represa, A. 1998. Glutamate receptors in dysplasic cortex: an in situ hybridization and immunohistochemistry study in rats with prenatal treatment with methylazoxymethanol. Brain Res. 782:142–52.
22. Chevassus-Au-Louis, N., Congar, P., Represa, A., Ben-Ari, Y., and Gaiarsa, J.L. 1998. Neuronal migration disorders: heterotopic neocortical neurons in CA1 provide a bridge between the hippocampus and the neocortex. Proc. Natl. Acad. Sci. (USA) 95:10263–8.
23. Chevassus-Au-Louis, N., Rafiki, A., Jorquera, I., Ben-Ari, Y., and Represa, A. 1998. Neocortex in the hippocampus: an anatomical and functional study of CA1 heterotopias after prenatal treatment with methylazoxymethanol in rats. J. Comp. Neurol. 394:520–36.
24. Innocenti, G.M., and Berbel, P. 1991. Analysis of an experimental cortical network: i) Architectonics of visual areas 17 and 18 after neonatal injections of ibotenic acid; similarities with human microgyria. J. Neur. Transplant. 2:1–28.
25. Innocenti, G.M., and Berbel, P. 1991. Analysis of an experimental cortical network: ii) Connections of visual areas 17 and 18 after neonatal injections of ibotenic acid. J. Neur. Transplant. 2:29–54.
26. Miller, B., Nagy, D., Finlay, B.L., Chance, B., Kobayashi, A., and Nioka, S. 1993. Consequences of reduced cerebral blood flow in brain development. I. Gross morphology, histology, and callosal connectivity. Exp. Neurol. 124:326–42.
27. Rosen, G.D., Galaburda, A.M., and Sherman, G.F. 1989. Cerebrocortical microdysgenesis with anomalous callosal connections: A case study in the rat. Int. J. Neurosci. 47:237–247.
28. Dvorák, K., and Feit, J. 1977. Migration of neuroblasts through partial necrosis of the cerebral cortex in newborn rats—contribution to the problems of morphological development and developmental period of cerebral microgyria. Acta Neuropathol (Berl) 38:203–212.
29. Dvorák, K., Feit, J., and Juránková, Z. 1978. Experimentally induced focal microgyria and status verrucosus deformis in rats—Pathogenesis and interrelation histological and autoradiographical study. Acta Neuropathol (Berl) 44:121–129.
30. Humphreys, P., Rosen, G.D., Press, D.M., Sherman, G.F., and Galaburda, A.M. 1991. Freezing lesions of the newborn rat brain: A model for cerebrocortical microgyria. J. Neuropathol. Exp. Neurol. 50:145–160.
31. Rosen, G.D., Press, D.M., Sherman, G.F., and Galaburda, A.M. 1992. The development of induced cerebrocortical microgyria in the rat. J. Neuropathol. Exp. Neurol. 51:601–611.
32. Suzuki, M., and Choi, B.H. 1991. Repair and reconstruction of the cortical plate following closed cryogenic injury to the neonatal rat cerebrum. Acta Neuropathol (Berl) 82:93–101.
33. Fitch, R.H., Tallal, P., Brown, C., Galaburda, A.M., and Rosen, G.D. 1994. Induced microgyria and auditory temporal processing in rats: A model for language impairment? Cereb. Cortex 4:260–270.
34. Fitch, R.H., Brown, C.P., Tallal, P., and Rosen, G.D. 1997. Effects of sex and MK-801 on auditory-processing deficits associated with developmental microgyric lesions in rats. Behav. Neurosci. 111:404–412.
35. Rosen, G.D., Waters, N.S., Galaburda, A.M., and Denenberg, V.H. 1995. Behavioral consequences of neonatal injury of the neocortex. Brain Res. 681:177–189.
36. Jacobs, K.M., Mogensen, M., Warren, L., and Prince, D.A. 1997. Experimental microgyri disrupt cytochrome oxidase-identified barrel formation in rat somatosensory cortex. Soc. Neurosci. Abstr. 23:811.
37. Luhmann, H.J., and Raabe, K. 1996. Characterization of neuronal migration disorders in neocortical structures. 1. Expression of epileptiform activity in an animal model. Epilepsy Res. 26:67–74.
38. Luhmann, H.J., Karpuk, N., Qü, M., and Zilles, K. 1997. Neuronal migration disorders in rat cerebral cortex: Electrophysiological and anatomical characterization. Soc. Neurosci. Abstr. 23:807.
39. Luhmann, H.J., Raabe, K., Qü, M., and Zilles, K. 1998. Characterization of neuronal migration disorders in neocortical structures: extracellular in vitro recordings. Eur. J. Neurosci. 10:3085–94.
40. Rosen, G.D., Jacobs, K.M., and Prince, D.A. 1998. Effects of neonatal freeze lesions on expression of parvalbumin in rat neocortex. Cereb Cortex 8:753–61.
41. Zilles, K., Qü, M., Schleicher, A., and Luhmann, H.J. 1998. Characterization of neuronal migration disorders in neocortical structures: quantitative receptor autoradiography of ionotropic glutamate, GABA(A) and GABA(B) receptors. Eur. J. Neurosci. 10:3095–106.
42. Herman, A.E., Galaburda, A.M., Fitch, H.R., Carter, A.R., and Rosen, G.D. 1997. Cerebral microgyria, thalamic cell size and auditory temporal processing in male and female rats. Cereb. Cort. 7:453–464.
43. Rosen, G.D., Herman, A.E., and Galaburda, A.M. 1999. Sex differences in the effects of early neocortical injury on neuronal size distribution of the medial geniculate nucleus in the rat are mediated by perinatal gonadal steroid. Cereb. Cortex 9:27–34.
44. Zilles, K. 1985. The Cortex of the Rat: A Stereotaxic Atlas. Pages 121, Springer-Verlag, Berlin.
45. Rosen, G.D., Sherman, G.F., and Galaburda, A.M. 1994. Radial glia in the neocortex of adult rats: effects of neonatal brain injury. Brain Res. Dev. Brain Res. 82:127–135.
46. Rosen, G.D., Richman, J.M., Sherman, G.F., and Galaburda, A.M. 1992. Birthdates of neocortical neurons in induced microgyria in the rat. Soc Neurosci Abstr 18:1446.
47. Rosen, G.D., Sherman, G.F., and Galaburda, A.M. 1996. Birthdates of neurons in induced microgyria. Brain Res. 727:71–78.
48. Rosen, G.D., Herman, A.E., and Galaburda, A.M. 1997. MGN neuronal size distribution following induced neocortical malformations: The effect of perinatal gonadal steroids. Soc Neurosci Abstr 23:626.
49. Rosen, G.D., and Burstein, D. 1997. MRI visualization of focal induced neocortical malformations of the rat. Neuroreport 8:3883–7.
50. Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic coordinates. Pages xxvi, [237] of plates, Academic Press, Sydney ; Orlando.
51. Schlaggar, B.L., and O’Leary, D.D.M. 1991. Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252:1556–1560.
52. O’Leary, D.D.M., Schlaggar, B.L., and Stanfield, B.B. 1992. The specification of sensory cortex: Lessons from cortical transplantation. Exp. Neurol. 115:121–126.
53. Koralek, K.A., and Killackey, H.P. 1990. Callosal projections in rat somatosensory cortex are altered by early removal of afferent input. Proc. Natl. Acad. Sci. USA 87:1396–1400.
54. Ghosh, A. 1995. Subplate neurons and the patterning of thalamocortical connections. Pages 150–172 in Bock, G., and Cardew, G., Ed., Development of the cerebral cortex. John Wiley and Sons, New York.
55. Ghosh, A., and Shatz, C.J. 1993. A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development 117:1031–1047.
56. McConnell, S.K., Ghosh, A., and Shatz, C.J. 1994. Subplate pioneers and the formation of descending connections from cerebral cortex. J. Neurosci. 14:1892–1907.
57. McConnell, S.K., Ghosh, A., and Shatz, C.J. 1989. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982.
58. Akers, R.M., and Killackey, H.P. 1978. Organization of corticocortical connections in the parietal cortex of the rat. J. Comp. Neurol. 181:513–538.
59. Wise, S.P., and Jones, E.G. 1976. The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J. Comp. Neurol. 168:313–43.
60. Innocenti, G.M., and Clarke, S. 1984. The organization of immature callosal connections. J. Comp. Neurol. 230:287–309.
61. Ivy, G.O., Akers, R.M., and Killackey, H.P. 1979. Differential distribution of callosal projections in the neonatal and adult rat. Brain Res. 173:532–537.
62. Ivy, G.O., and Killackey, H.P. 1981. The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. J. Comp. Neurol. 195:367–389.
63. Jacobson, S., and Trojanowski, J.Q. 1974. The cells of origin of the corpus callosum in the rat, cat and rhesus monkey. Brain Res. 74:149–155.
64. Zaborszky, L., and Wolff, J.R. 1982. Distributional patterns and individual variations of callosal connections in the albino rat. Anat. Embryol. 165:213–232.
65. Koester, S.E., and O’Leary, D.D. 1994. Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J. Neurosci. 14:6608–20.
66. Koester, S.E., and O’Leary, D.D. 1993. Connectional distinction between callosal and subcortically projecting cortical neurons is determined prior to axon extension. Dev Biol 160:1-14.
67. Olavarria, J., and van Sluyters, R.C. 1985. Organization and postnatal development of callosal connections in the visual cortex of the rat. J. Comp. Neurol. 239:1–26.
68. Miller, M.W., and Vogt, B.A. 1984. The postnatal growth of the callosal connections of primary and secondary visual cortex in the rats. Dev. Brain Res. 14:304–309.
69. Elberger, A.J. 1994. Transitory corpus callosum axons projecting throughout developing rat visual cortex revealed by diI. Cereb. Cortex. 4:279–299.
70. O’Leary, D.D.M., Stanfield, B.B., and Cowan, W.M. 1981. Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Brain Res. 227:607–617.
71. Ivy, G.O., and Killackey, H.P. 1982. Ontogenetic changes in the projections of neocortical neurons. J. Neurosci. 2:735–743.
72. O’Leary, D.D.M., and Stanfield, B.B. 1985. Occipital cortical neurons with transient pyramidal tract axons extend and maintain collaterals to subcortical but not intacortical targets. Brain Res. 336:326–333.
73. Rosen, G.D., Sigel, E.A., Sherman, G.F., and Galaburda, A.M. 1995. The neuroprotective effects of MK-801 on the induction of microgyria by freezing injury to the newborn rat neocortex. Neuroscience 69:107–114.
74. Kromer, L.F. 1987. Nerve growth factor treatment after brain injury prevents neuronal death. Science 235:214–216.
75. Needels, D.L., Nieto-Sampedro, M., and Cotman, C.W. 1986. Induction of a neurite-promoting factor in rat brain following injury or deafferentiation. Neuroscience 18:517–526.
76. Nieto-Sampedro, M., Lewis, E.R., Cotman, C.W., Manthorpe, M., Staper, S.D., Barbin, G., Longo, F.M., and Varon, S. 1982. Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science 217:860–861.
77. Hamburger, V., and Yip, J.W. 1984. Reduction of experimentally induced neuronal death in spinal ganglia of the chick embryo by nerve growth factor. J. Neurosci. 4:764–774.
78. O’Leary, D.D.M., and Terashima, T. 1988. Cortical axons branch to multiple subcortical targets by interstitial axon budding: Implications for target recognition and "waiting periods". Neuron 1:901–910.
79. Nicolelis, M.A.L., Chapin, J.K., and Lin, R.C.S. 1991. Neonatal whisker removal in rats stabilizes a transient projection from the auditory thalamus to the primary somatosensory cortex. Brain Res. 567:133–139.
80. Marin-Padilla, M. 1997. Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of the neocortex. J. Neuropathol. Exp. Neurol. 56:219–35.
81. Marin-Padilla, M. 1996. Developmental neuropathology and impact of perinatal brain damage. I: Hemorrhagic lesions of neocortex. J. Neuropathol. Exp. Neurol. 55:758–773.
82. Saporta, S., and Kruger, L. 1977. The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 174:187–208.
83. Molnár, Z., Adams, R., and Blakemore, C. 1998. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18:5723–45.
84. Catalano, S.M., Robertson, R.T., and Killackey, H.P. 1996. Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J. Comp. Neurol. 367:36–53.
85. Catalano, S.M., Robertson, R.T., and Killackey, H.P. 1991. Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat. Proc. Natl. Acad. Sci. USA 88:2999–3003.
86. Molnár, Z., and Blakemore, C. 1995. How do thalamic axons find their way to the cortex? Trends Neurosci. 18:389–397.
87. Senft, S.L., and Woolsey, T.A. 1991. Growth of thalamic afferents into mouse barrel cortex. Cereb. Cortex 1:308–35.
88. Miller, B., Chou, L., and Finlay, B.L. 1993. The early development of thalamocortical and corticothalamic projections. J. Comp. Neurol. 335:16–41.
89. Frassoni, C., Arcelli, P., Regondi, M.C., Selvaggio, M., Debiasi, S., and Spreafico, R. 1995. Branching pattern of corticothalamic projections from the somatosensory cortex during postnatal development in the rat. Brain Res. Dev. Brain Res. 90:111–121.
90. Jacobs, K.M., Mogensen, M., Warren, E., and Prince, D.A. 1999. Experimental microgyri disrupt the barrel field pattern in rat somatosensory cortex. Cereb Cortex 9:733–44.
91. Jacobs, K.M., Gutnick, M.J., and Prince, D.A. 1996. Hyperexcitability in a model of cortical maldevelopment. Cereb. Cort. 6:514–523.
92. D’Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. 1997. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17:23–31.