MouSeek V 1.0 Revision History

I.  Introduction

Now where did I put that mouse?  If you've been asking yourself this question recently, then you are in the same position our lab was in when we decided to create this database. The "flat" worksheet we have been using for tracking our inventory contains a huge list of all of the mice and is difficult to keep current.  Furthermore, extraction of useful information from it was time-consuming for our colony manager.  For lack of anything better we have relied heavily on cage cards to tell us information about the mice when setting up breeding cages or deciding which mice to use in experiments.  This was normally done in the smelly mouse room and tended to be confusing.  The solution to our problem is to enter the mouse data into a "relational database" from which all information about the colony can be quickly and efficiently extracted in the nice smelling lab.  Excel is NOT the best program to use to create a database of this type because its relational capacity is difficult to exploit. After perusing web sites on different database applications it was clear that FileMaker Pro was the software of choice for most labs seeking to make their inventory accessible via database.  This document is a log of the author's trek along the learning curve experienced while creating MouSeek.  The hope is that future users of this software will be able to reference this document when questions about topics ranging from day-to-day usage to expandability arise.

II.  Features

We want to use MouSeek to maintain records for 5 inbred mutant murine colonies.  We need to keep track of birth dates for all our litters and generate lists to tell us when to wean and number progeny.  For any mouse, we want to know which litter the mouse came from, its dam and sire, littermates, genotype, phenotype, its exact cage location, other mice residing in that same cage, any progeny it has produced, etc.  For the mutant colonies that we are unable to genotype by a more direct approach, MouSeek needs to keep records of how many litters and the numbers of affected offspring for each test-breeding pair to assist with the identification of heterozygous mice.

III.  Log

10/26/98--The Backbone

When designing a relational database a few organizational decisions must be made before working in FileMaker.  Deciding how the information will be entered is a good place to start.  Will you want to enter a record at the bottom of a list of records?  Or, do you want to enter the information into a virtual cage card with the list of cards running in the background?  Both?  Also think about what questions you will need to ask the database.   Deciding how you will access the information will also help in determining an organizational scheme.  Depending on the complexity of your solution this can take an hour, a week, or more.

Here are some websites that can help you organize your database:

http://www.filemaker.com/support/frame-support.html (database design)

http://www.database-systems.com/reshelp.html (links to more info)

After going through this process we decided on four basic informational structures that provide flexibility for data entry and retrieval: Breeders, Holding Cages, Litters, and Mice.  Each structure is assigned to a separate file, and each record within the structure has an ID that distinguishes it from all other records in that structure (e.g. Breeder ID, Cage ID, Litter ID, and Tag #).  This is necessary to allow the files to reference each other.  [Note:  The present state of MouSeek may differ slightly from this description.  A current file description may be found at the end of this document.)


Breeders: This file will contain information about why the breeding cage was setup and at what date.  A yes/no field will show if the cage is active.  Information about the sire and dam(s) in the cage is entered by tag number (genotype, strain, DOB, and Litter ID).  Also, information about each litter is listed by Litter ID (LID)  (DOB, # Pups, DOW, # males and females, and which holding cage they went to).  This format allows a record in Litters to be created and edited within the breeder record.  The Breeder ID is in the form BX where X is the number assigned to the breeding pair.


Litters: This structure is used to keep the litter information separate from the breeder records in case we want to look at any litter without regards to which breeder it came from.  Nomenclature for the LID is simple: BX-n is the nth litter from breeding cage BX.


Cages: This file is needed so the Cage ID can be found for any mouse with a known tag #.  All mice within a holding cage are listed by tag #.  Information regarding when the holding cage was setup and when mice were removed or added to the cage is also included.  The sex, active status and strain are listed with the Cage ID for each holding cage.


Mice:  This is essentially the same "flat" database we had to begin with in Excel.  The strain, DOB LID, genotype, Cage ID, and comments for each mice are listed by tag #.  Changes in any record in Mice are reflected in other files that reference the same record and vice versa.  This was done to increase data entry flexibility.

[added 11/13/1998  Other fields were created in all of these files as helpers to scripts.  When possible I separated the fields (in the define fields box in the file menu) relevant to data storage from those needed for scripts to run properly.]

[added 11/11/98 The next crucial step was to set up the relationships between these files so that multiple records in one file could be associated with their "parent" record in another file.  A relationship is what is used by FileMaker to establish the, uh, relationship between two files.  For each relationship, a master file and a related file are needed. Terminology: the master file is the file containing the "parent" record, i.e. the record to which multiple records in another file belong.  The related file is the one containing the multiple records belonging to a single record in the master file.  For example, the relationship between the Breeders file and the Litters file was that all litters with the same Breeder ID belonged to the same record in Breeders. In this example, Breeders is the "master" file, and Litters is the "related" file.  The two files are related through a match field.  The match field is a field in both files that is used to identify the related record as belonging to the record in the master file.  In our example, Breeder ID is the match field--it is a field that tells a record in Breeders what Litters records belong to it.

A similar relationship was set up between Litters and Mice.  All mice with the same Litter ID are related to the record in Litters with that Litter ID (in this case Litter ID is the match field).  Similarly, a relationship between Cages and Mice was set up so that all mice with the same Cage ID could be related to the same record in Cages (Cage ID is the match field).  Simple, no? 

So, why do we care?  You might not, but I'm going to tell you anyway.  These relationships are what allow a record in Breeders to list all litters for that breeding pair.  A portal in Breeders is created in the layout mode of FileMaker.  This portal is then assigned the relationship given in the first example.  When you go back in to browse mode in Breeders you see it really works!  Any information you want to know about a litter for the current breeder record is listed as if it existed in the Breeders file.  Whew.

Another useful concept that utilizes relationships is that of a lookup.  A lookup is the same as a portal except it only shows the first record in the related file with the proper match field.  For example, if we had used a lookup in Breeders to show the litters belonging to each breeder then we'd only get the first litter in Litters that had the right Breeder ID.  But, they are useful when only one record in the related file contains the match field you want to use.  For example, in Breeders I have put fields describing the parents of the litters.  Since all mice in Mice are listed by tag # I can use a relationship to define lookups that will automatically tell me the genotype, DOB, etc. when I enter the tag #s of the parents!  Relationships, lookups, and portals are confusing at first, but when you understand how they work you can become very powerful and take over the world.]

Now you should have an idea of how the four files work together to make up the backbone of MouSeek .    It remains to be seen whether Breeders and Cages can be fused into one file with a Breeder/Holding Cage button to switch between the different formats.  This would make data entry simpler, but the field requirements for each file are slightly different and may make unifying them unwieldy.  The alternative may be to make a third file that connects the user to Breeders or Cages based on a flow-chart decision scheme.  We'll see.

As of now I could stop because these four files contain all the functionality the database needs.  However, it would take some familiarity with FileMaker to get the queries to work properly and to find one's way around the files.  It wouldn't be difficult to learn, but I don't have much else to do so I'm going to try to make this a self-contained application to the best of my ability.  The reader can decide if I have accomplished this or not.


Now I have to decide how to put some flesh onto this skeleton of a database.  There are an inordinate number of additions I can make to the file structure, but I would like to get a working beta up as soon as possible so I have to decide on which systems to incorporate first.  Do I do the skin first by adding graphics and buttons and spicing up the layouts?  Or, should I work on the sensory and expressive systems by creating query dialog boxes and report formats?  Hmm…I suppose this shall take a while.  I think I'll talk to Eric.

11/11/98: The first thing I did was I turned some of my fields into value lists.  This is useful when you have a limited number of values possible for a field.  For example, Sex can really only be two things, so a value list provides an easy way of assigning a value to that field.  After thinking about what to do next I decided I would learn how to create scripts that step the user through various common tasks like weaning a litter, recording the birth of a new litter, changing the size of a litter due to deaths, creating new cages for breeding, etc.  A script is a series of steps that tells FileMaker Pro to execute certain commands in a defined order.  The scripts can be paused to allow data entry by the user.  To resume the script the user can click a labeled button on the screen.  [This requires making extra layouts for scripts only, and I don't like that very much now, so I learned how to use the messaging capability that FileMaker has.  It uses a script step to show a message to the user.  Then, you can check the response that the user gave in the script using Status(CurrentMessageChoice).  The response can dictate what script you execute next or determine what values to put into a field, or execute any other decision-based action.  The Edit Database scripts in Options have some good examples of this.  2/4/99] This scheme allows point-and-click ways to navigate through the database, enter data, print reports, etc. without really having to know anything about how the database is structured.

However, this simplicity of operation means new fields must be added, new formats for each file must be created (use formats when you want to show the fields of a file in different ways), and basically the whole database has to get more complicated.  No problem!  Here are a few descriptions of the first few scripts I made and why I made them.  It becomes apparent when creating scripts why new fields and layouts are needed.

Open all related files through a single file:

This was crucial because it was a pain to open up all the files when entering FileMaker, so a short script that opened each file was great, and it could be assigned to run when any one file was opened.  So, I made a main menu file that opens all other files upon opening and has buttons to take you where you want to go today.

Automatic entry of Litter ID when it is created:  

The idea was that the user shouldn't have to enter in a Litter ID every time a new litter comes along because the ID is really only a function of the Breeder ID and how many litters that breeder already has.  If there are no litters for that breeder, then the next litter to come along will be BX-1 (BX is the Breeder ID).  Any additional litters will be BX-(# litters + 1), right?  So, I needed a new field in Breeders that keeps track of the number of litters for each breeder.  This took some time to figure out, but in the end it was very simple.  Essentially, we need a way of looking into the portal for the breeder and count the number of litters in it.  It turns out that there is a class of functions that allow you to summarize data in a portal called aggregate functions.  You can use Max to determine which litter has the most pups, Sum to tell you how many pups a breeder has had total, or Count to simply count how many records in the portal have a non-blank entry in a specified field.  I used Count() to tell me how many litters each breeder had.

The next step was to find a way to get the complete Litter ID to show up when a new litter is created.  I learned that a clear button can be created and put on top of a field such that any time the field is clicked on, a script is executed.  When this is done in a field of a portal every row of the portal contains that button in the same field.  I assigned a script that takes the Breeder ID of the current record and places it in the Breeder ID field of a new related record in Litters (match field = Breeder ID).  Then I turned the Litter ID field of Litters into an Auto-entry calculation field.  The calculation takes the Breeder ID and the number of litters from the record in Breeders with a matching Breeder ID, adds 1, and concatenates the two with a dash in the middle.  There were slight problems because when there are no litters in the portal the # litters field is blank, so you get a litter ID = "BX-" for the first litter you create.  After that, the # litters isn't blank, so you get the correct litter ID for successive litters.  A conditional statement takes # litters and forces it to be a zero if there are no litters for that breeder. [Uh, I changed all that.  I didn't like having Litter ID as an Auto-entry calculation field.  This is because you can't enter a value into it directly, which you might want to do sometimes.  So, instead of putting clear buttons on fields in the litters portal in Breeders, I made buttons to the side of the portal that create a new record in Litters, assign the proper Breeder ID(based on the Breeder ID of the Breeders record you were in when you clicked on the button), and then use a calculation to set the Litter ID of the new record in Litters.  Click button, grab current Breeder ID, make new record in Litters, and calculate Litter ID.  This is hard to communicate sometimes. 2/4/99]

Blah, blah, blah, these are the silly problems that come up, but overcoming them can make the difference between good and great I think.  The cool thing was that once it was done all you needed to do, either in Litters or in Breeders, was enter the Breeder ID (in Breeders by using the script button) and the correct Litter ID for a new litter automatically was entered.  Viola!

Record birth of new litter:

When a new litter is born, a lot of the fields in Litters can not be filled out because things like sex, genotype, DOW, etc. are up in the air, so I made a format that only had the fields: Litter ID, DOB, # pups, and notes.  That way the user would not be distracted by a bunch of empty fields when recording a birth.  Next, I created a script in Breeders that saves the Breeder ID of the current record in a global temp ID field in Litters and runs a subscript that exists in Litters (I made a subscript so that the user could have access to all the fields in Litters).  Then I created a button called "enter new litter" in Breeders and attached this script to it.  The subscript in Litters ("enter litter information") takes the temp ID and records its value in a new record's Breeder ID field.  The Litter ID is calculated (cool), and the DOB is filled in by the Today function and selected.  That way, the user can just tab to the next field if the litter was born on the date of data entry, or begin typing and replace that date with the correct DOB.  Then, to the shortened format I added a couple of things.  I thought that entering the birth of litters would probably be a frequent thing, so it would be nice to be able to enter a new litter for any breeder from this data entry format.  So, I created a field in Litters that is a value list whose values come from all the possible values for Breeder ID in Breeders.  Sneaky huh.  Then I created a script ("set breeder ID and create new litter") that takes that new Breeder ID value and copies it into temp ID.  Then "enter litter information" is called again to create the next new litter.  This cuts down on the amount of scripts needed to do everything.  Modularization is a good thing.  Then I added two buttons to the shortened format.  One is a "done" button that takes you back to the record in Breeders that matches the Breeder ID of the litter you have just entered.  This is done with the "Go to related record" function.  The other button is a "go" button that initiates the "set breeder ID and create new litter" script.  It is intended to be pressed once the breeder ID of the next litter to be created is entered into the "all breeders" value list field. [I changed this a bit too.  In the process of hooking up all these scripts to the main menu in Options, I decided to forego some of this button pressing in favor of a more simple scheme.  To record a new litter I made a new field in options that is a text field and is assigned to a value list containing all Breeder ID values in Breeders.  Then, the user selects the Breeder ID from the list and has a couple things he can do.  Click on "new pups" to create a new litter (very similar to what I described above); click on "record deaths" to document the death of pups in the selected breeder cage, click on "wean litter" to wean the oldest litter in a cage, or click on "comment" which takes you to the selected breeder cage record so you can fill in a comment.  This is less confusing and more efficient I think.  2/4/99]

Now, whenever a new litter is born, the user goes to the record of the breeder that created the litter, presses the create new litter button, enters the # pups and any notes, and can either go back to the breeder record or create a new litter for some other breeder.  Very cool!

My next goal is to create a script that steps the user through the process of entering the data relevant to weaning a litter.

11/13/1998  And that turned out to be quite a project.  I am thinking that if I continue to describe every detail concerning the creation of MouSeek this file will get exceptionally difficult to wade through.  However, I would really enjoy stepping through the process to cement the concepts in my mind, and it sure would be a nice thing to have in the future…I can't decide so I'll just carry on as I have.

[The process that is in place now that weans a litter is so much better than what I originally came up with, but it may be instructive to see how I tried to do it the first time.   Further down (12/17/98) I describe the scripts that are in place today.  2/4/99]

The wean litter process contains three main parts.  One involves deciding if there have been any changes in the number of pups.  If there have been changes then it would be nice to know when the change was made, how many pups are left, and what happened to reduce the number.  Then, we could show in Litters all the changes that were made to a single litter, when they happened and why.  Sound familiar?  The idea is the same as the one when we wanted to show all litters for a single breeder.  When we wanted that we created a new file named Litters and made a portal with the correct relationship in Breeders.  For this new data we will create a file named Edit Litters and give each record these fields: Litter ID (the match field), date, new number of pups, and an explanation text field.  Also, a portal in Edit Litters will reference Edit Litters by Litter ID to show for each litter the list of changes to # pups that were made.  The same portal will likely be made in Litters in a new layout that can be linked to the regular layout with a button.  That way, when looking at a litter, pushing a button will tell you all the edits made to that litter without having to switch files.  I suppose it is redundant to have these two portals but I think they will both be useful.

So, I created a new layout in Litters named "Wean Litter."  It shows the breeder ID, litter ID (still cool), DOW (filled in automatically based on today's date), # of pups, and a question: Are there still <<# pups>>  [this allows you to put a field variable within a sentence on the layout]  in this litter?  Next to this are two buttons: yes and no.  This layout is linked to breeders by a button named wean litter.  This button has a script that selects the litter to be weaned in the portal for the current breeder, goes to the related record in Litters, and performs a subscript in Litters that switches to the "Wean Litter" layout.  Backtracking…You should be asking yourself, how does the script know which record in the portal contains the litter that needs to be weaned?  If you were then good question!  If you weren't then I guess it's okay.  There is a script step named "go to record in portal" with the number of the record in the portal to go to as the option.  The options are first, last, next, previous, something else, and number in field.  The problem is that last takes you to an empty record and first is only correct if there is only one litter for the breeder.  Next and previous require you to select a record anyway, so why bother making a script?  The number in field option was my only hope.  I figured that the correct portal row number could be had by summarizing the data in the portal somehow.  Aggregate function.  What field in Litters could be summarized to give us the litter # that is to be weaned?  It isn't always the highest number because sometimes a new litter is born before the previous litter can be weaned.  The easiest way to solve this was to make a new field that was a boolean (weaned?) that is 1 when a DOW is entered for the litter.  If no DOW is entered, then the litter should be unweaned, so the sum of all the weaned? fields over all litters of a breeder should give us the number of litters weaned for that breeder.  Add 1 and the row # for the litter to be weaned is had.  This calculation is made in a new field in Breeders and is referenced by the go to portal row script step. [Warning!:  Be careful when using portal rows or fields and script steps that switch between files. When you are in a field [or portal row] of a record in some file, if you use a script that switches to a different file and then come back to the original file you will no longer be in the field [or portal row] that you left off in.  This can cause problems if you want to, say scroll through each record in a portal and perform some action on them in a different file.  The solution I came up with (which probably isn't the best) was to make a new field in the original file that keeps track of where you left off before you went to the other file.  You'll see…2/4/99]

Next I needed to assign scripts to the Yes and No buttons in the layout switched to by the wean litter script.  The Yes button takes you to the Wean Litter (Yes) layout which displays fields to enter # males, # females, destination holding cages, and tag # range.  No should allow you to create a new record in Edit Litters with its Litter ID = to the Litter ID of the current litter record.  [This is where I deleted layouts and put in show message script steps and if then statements instead.]  In order to create that new record we must be in the Edit Litters file.  But, when we go to Edit Litters we will lose the information about what Litter ID should be assigned to the new record.  Enter global variables to the rescue.  In FileMaker a global variable is one that has the same value for every record in a file.  If you are familiar with coding in C or Pascal or just about any programming language, global and local variables should ring a bell.  However, FMPro is NOT a programming language, so the term is to be used loosely.  Essentially, we need to execute a function and pass Litter ID as an argument.  To do this in FMPro a global field temp Litter ID is created in Edit Litters.  Before switching to Edit Litters we set the temp Litter ID = to Litter ID of current record in Litters using a relationship matching Litter ID's between the two files.  I wondered why you could do this because before the record in Edit Litters is created there is no record that has a matching Litter ID, so how can this relationship give us access to the global variable in Edit Litters?  I think, though I'm not certain, that this is possible because a relationship defaults to a blank record when no matching record can be found.  So, it gives us access to a blank record, which in turn allows us to enter data into the temp litter ID field.

Why can't we put the data straight into the Litter ID field of Edit Litters?  Because the next time we have an edit to enter for a litter, the relationship defined in Litters will take us to the first record in Edit Litters with a matching Litter ID.  When we set that Litter ID = to the current Litter ID we are merely replacing it with itself.  Then, when we create a new record to record a new editing, all references to that ID are lost.  A global temp variable allows us to do what we want.  Phew.

In Edit Litters I have two buttons.  One sets # pups for the current litter = to new number of pups just entered by the user.  Next the record in Litters that we came from is brought back using the go to related record script step, and the last step initiates a script in Litters that switches to the same layout that we would have gone to if we had pressed the yes button in the Wean Litter layout of Litters.  The other is a reset button.  In Edit Litters and in Litters I have created clear buttons that just replace current field values with blanks and return to the field at the top.  This makes fixing mistakes less painful I think.

Now, whether we pressed yes or no, we should be at the same spot.  Enter info about the # males and females, what holding cages they are going to, and what tag #'s span the litter.  One button at the bottom of this layout is the reset button and the other says OK and initiates a script in Mice that will create the records for each mouse in the litter.

Here again we have the problem of trying to pass information between files and create new records containing this information.  And predictably I used global variables in Mice to store all the information that needed to be exchanged.  These global variables were temps for tag #, Litter ID, DOB, DOW, holding cage ID for females, # pups, and initial tag # for the litter.  Most of this information will be repeated in each record created in Mice, so it would be nice to have the script enter it for us.  I also created a temp strain and sex ID that will be manipulated by the script.

The idea for the "create litter of mice" script in Mice is very simple.  Create a new record, pause the script while the user enters information about phenotype and other unknowns, then do the same thing again with the next tag # until you have done all the mice in the litter.  Coding the script was not that easy but still not too hard.  The code goes a little something like this:

  1) Set Field [Temp Strain, ""]
//sets temp strain field to null so strains from past litters don't show up

  2) Loop

  3)    Exit Loop if [temp tag# = (temp 1st tag# + temp #pups)
//*exit if all pups have been entered

  4)    New Record

  5)    Set field [Litter ID, temp litter ID]
//sets this record's litter ID = to Litter ID passed to the script

  6)    If [temp tag# = (temp 1st tag# + temp # females)]
//*if all females have been entered

  7)       Set field [temp sexID, M]



//switch to males

  8)       Set field [temp hold, Litters::Dest. For males]

//switch to male cage ID

  9)    End If

10)    If [temp tag# = temp 1st tag#]

//*if this is the first mouse

11)      Go to field [select, strain]

//go to strain field so it can be entered

12)    Else



//otherwise

13)       Go to field [select, phenotype]
//I already know the strain so lets go to the phenotype

14)   End If

15)    Set field [mouse ID, temp tag#]
//*set this record's mouse ID = temp tag#

16)    Set field [Dow, temp DOW]

//set this record's DOW = DOW passed to script

17)    Set field [Cage ID, temp hold]
//set this record's Cage ID = current temp cage ID

18)    Set field [Strain, temp strain]

//…

19)    Set field [DOB, temp DOB

//…

20)    Set field [Sex, temp sex ID]

//…

21)    Pause Script


//user enters strain and rest of the information

22)    If [temp tag# = temp 1st tag #]

//if this is the first mouse of the litter

23)       Set field [temp strain, Strain]
//set the global strain variable = this record's Strain field

24)    End If



//because now we know the strain for the litter

25)    Set field [temp tag# = temp tag# + 1]
//go to the next tag # and go back to top of loop

26) End Loop

* temp tag# is incremented by 1 every time through the loop, so each mouse gets a unique tag #.  This number can be used to keep track of which mouse in the litter is being entered so the cage ID and sex ID can be set accordingly (steps 6 and 7).  This tag # also tells the loop when to end (3), and which field to go to first during the pause (10-14).

The script in Litters that initiates this script as a subscript also passes the variables containing information about the litter from Litters to Mice.  After the mice are created by the subscript the user is taken back the same record in Breeders where the wean litter process was initiated.  Pretty neat, OK!

Next I think I'll come up with a script to setup breeding cages.

11/20/98  On second thought…Unfortunately, it's been a while since I update this and I've done a lot since the last time I wrote, so my recollection of what has been changed is not clear.  Also, the database is getting much more complicated, and its hard to keep track of all the files, scripts, fields, and relationships.  Oh well.

The script above that creates records for each mouse in a litter is pretty nice.  However, it would be wonderful if it created the holding cage records for us.  Also, it would be nice to be able to go to any mouse and know its travels between holding cages, breeding cages, and cages in the lab.  The create litter script could create cage and "transaction" records as it goes, making data entry simpler for the user.  Records in the transactions file will be created whenever a mouse is moved from one cage to another, and, preferably, this will be invisible to the user.  Also, the cage ID of the mouse can be updated automatically by the create transaction script in Transactions.   So I created this file and gave it 3 fields: mouse ID, date, to, and from.  I created a script that takes global variables representing the ID, date, to and from fields, and creates a new record with them and todays date.  That way, any file can pass information about a mouse, and before and after cages to the script, and then a new record will be created with this information.  When a mouse is moved from a holding cage to a breeding cage the same script can be used.  The same idea can be applied to creating a cage record for the mice in a litter.  The new script looks like this:

 1)   Go to layout (data entry)

//this insures that the proper layout is used

 2)   Set field (Temp strain, "")

//initialize global variable

 3)   Loop

 4)      Exit loop if (temp tag#=temp1st tag# + temp#pups) 
//when all mice have been entered, exit loop

 5)      New record

 6)      If (temp tag#=temp1st tag#   + temp #females)

//if all females have been entered

 7)         Set field (temp sex ID, M)



//switch global representing sex ID

 8)         Set field (temp hold, litters|with temp::Male Cage ID)
//switch to male cage ID (from litters file)

 9)         Perform script (make a new cage)
//this script sets globals in Cages and performs subscript 






//in Cages that creates a new record and sets fields = globals

10)      End if

11)      Set field (litter ID, temp litter ID)
//set litter ID of this mouse record = global passed from Litters

12)      Set field (mouse ID, temp tag#)
//…

13)      Set field (Dow, temp DOW)

//…

14)      …



//the rest are the same as above

15)      Perform script(creat a transaction)
//sets globals in Transactions and performs subscript in Trans.






//that creates a new record and sets fields = globals

16)      If (temp tag# = temp1st tag#)
//if this is first mouse

17)         go to field(strain)


//go to the strain field so the rest of the records in mice can use

18)      Else



//that value for their strain field

19)         go to field(phenotype)

//otherwise go to phenotype

20)      End if

21)      Pause script


//allows user to enter unknown fields

)      Set field (temp tag#= temp tag# + 1)
//go to next mouse

)   End Loop

Actually, this script will probably be edited further because as it is it does not allow for the user to use multiple cages for the same sex, which happens when the litter has more than 6 or 7 of one sex.  I don't know how I'm going to solve this problem yet.  I may have to redesign the create litter script to make it more modular.  Then if the user changes variables then different scripts can be called.

I spent way too much time trying to figure this one out, so I put it aside and worked on some easier things for a bit.  One of the easiest was to put make some scripts in mice that allows the user to show lists of each strain.  I figure these will be the most common finds that will be performed so buttons will be available for them.  Individual find scripts were created named by strain.  In the main menu I'll need to create a more general search form that allows the user to track down anything in the database he wants.

[Again, this next script I eventually took out and replaced with a more general one that allows you (from Options) to pick out mice that you want to set up in a breeding cage.  The new one allows you to put any two mice in the database into a new record in Breeders.  2/4/99]

Next I found out from Eric that he frequently takes mice straight from the nursery cage to a breeding cage.  I added a layout to Breeders that asks if you want to make a breeding cage using mice from this litter (and added it onto the end of  the create litter script in Litters.  If you say yes then a new record in Breeders is created, active is set to "yes," the setup date is set to Today, and the breeder ID is calculated for you.  This is done by taking the breeder ID and running it through a text to number function which extracts the number after the B of the ID.  I created a field that stores this value for each breeder (serial ID) and a summary field that calculates the max(serial ID) for the file.  When you say yes the breeder ID is set to B-(maxID +1) and you go to a layout in Breeders with fields for purpose of cross and all mice in the breeding cage.  Eric sometimes puts multiple females in the same cage, so  I added female ID fields to the layouts in Breeders.  A relationship to Mice for each female breeder id field was created so all info for all female breeders could be looked up from Mice and displayed in Breeders.

The user enters tag #'s into the appropriate fields on the layout and says finish or more depending on whether this is the last breeding cage to be set up for the day.  Then I ran a script that scans each tag # field in this layout looking for non-empty values.  FMPro has a useful feature that allows you to set the tab order in a layout.  This allows you to set which fields are sequentially tabbed through.  In data entry this tab order should go from date to purpose of cross to male ID, female1ID, female2ID, etc.  However, when scanning all tag # fields for values, the tag order should go from male ID to female1ID, etc.  So I duplicated the layout and changed the tab order accordingly in the duplicated layout.  The script switches to this layout, does the scan, and records the transactions.  When a non-empty value is found, the tag #, the mouse's cage ID, setup date of the cage, and breeder ID are sent to Transactions for creation of a transaction record.  This script was kind of tricky.

A temp tag# global field was created to track the ID numbers. If you didn't set the temp tag# = "" at the beginning of the loop and the next field was blank, then you would create a duplicate record in Transactions for the mouse in the previous field.  A field tracker had to be created so that the script knew which field to go to after creating the transaction.  Apparently after performing an external script (create transaction) FM forgets which field it used to be in.  (I ran into a couple of never-ending loops this way…) The loop goes to next field, looks at the ID field, copies it to temp tag #, sets field tracker = to current field, then creates a transaction for the mouse if the ID field is non-empty.  Then a "go to correct field" script was performed that went to the field specified by field tracker.  The loop exited if field tracker = female5ID and went back to the layout the user started out in when he pressed the wean litter button.  Phew!

While in Breeders I thought it would be nice to generate my first report.  Eric needs a daily update of all breeders in the mouse room containing the setup date, # litters, # pups in current litter (if any), DOB of last litter, Male ID, # females, and all female tag #'s.  I had setup date, Male ID, and # litters already.  I had to create the other fields.  DOB of last litter was arrived at by finding the maximum of dates in the litter portal.  # pups was "NA" if the last litter in the portal had a DOW.  If DOW = "" then # pups of current litter should be a lookup in Litters for # pups by litter ID in last row of portal.  A last litter ID field was generated for each record that holds the litter ID for the most recent litter for the breeder.  This was the match field for the # pups lookup.  All female tag #'s and # females was had by scanning through the female(n)ID fields and looking for non-empty fields.  If non-empty then count = count + 1, and all female tag #'s = all female tag #'s & ", " & current tag#.  These temp fields were created as globals.  They were initialized at the beginning of a script initiated by a print breeding cages script in the main menu.  At the end of the scan, # females was set to count, and all female tag#s was set to all except the last two characters of the all female tag#'s global.  A new layout was created that put these fields in list format with a box for comments at the end.

I guess I'm in a grumpy mood today.  You'll have to bear with the dry tone of this entry…

Please bear in mind that all of this has taken a lot of thought, and if it seems confusing that's probably due to two things.  1)  It's an intricate problem and 2)  I'm not an experienced designer, and there are surely more elegant solutions to these problems.  I did my best to lay things out in sequential fashion and describe problems along the way to give context to the extra fields and scripts that I had to add.  For brevity's sake I have begun to leave out some of the details, like creating short scripts that are called externally to get to the correct layout of a file after a script is performed.  Coming up with the calculations for the fields was a task that required me to learn more about text and number functions.  A good example of why this is necessary:  I switch to preview mode in the script that prints out the breeder list.  It pauses to allow the user to look at how the page will look printed, and then continues by printing or is canceled by user.  If, you don't set the script to browse mode in the beginning, then the scanning part of the script goes into an infinite loop because it can't get to the layout with the correct tab order in preview mode.  Sticky…

I made a portal in litters that looks up all deaths for that litter in the edit litters file.  A summary field in Litters calculates the total number of deaths in that litter.  I plan on putting a summary field in breeders that sums up all deaths across all litters.  Just did it.  Fancy…[Later on I added total # pups and total  # affecteds]

I hope to put in a report that prints a list of all litters that need to be weaned and their projected DOWs.  I also would like to start working on some of the search functions that will make finding information easy and intuitive.

12/2/98


Well, I think I've done as much of the scripting that I can deal with for now.  During the last couple of days I have tried to lay out the graphical structure of MouSeek.  I ripped off the general layout and colors from the FileMaker templates.  I suppose I am just not feeling graphically inspired today.  The layout is pretty simple, but not so simple to implement, as I am discovering.  In the main menu you have a hierarchy of choices to maneuver your way through common tasks.  These include searches, report printing, and database editing.  The editing part is the most intricate because within each main file there are a couple of things that will be done on a regular basis.  In mice, for example, we will want an easy way to say, ok, this mouse number died today.  So did this mouse number, and so on.  Also, in litters we will want to say this litter had two pups die overnight for unknown reasons.  In Breeders and Cages we will want an easy way of setting up and removing cages.  Also we will want to be able to ask the database, how many lethargics (one of our mutant strains) do we have in the colony as of today.  And so on, and so forth.  I set up a bunch of different layouts with buttons on the words so clicking on them maneuvers you through the hierarchy.  The next task was to hook up this format with all of the scripts I had already made.  This was a matter of creating formats in each of the files that have the same theme and having the main menu call the relevant scripts externally.  Creating the layouts will be the toughest because I like to pay attention to detail.  After I have the most basic scripts and layouts hooked up together I will probably start entering data to test the application.  (It really is turning out nicely…)

12/8/98

I suppose my initial enthusiasm for this project is wearing off after working on it for so long without much else to keep me busy.  I created a couple of the search scripts and connected them up to the main menu.  These were a little tricky because I wanted to use error capturing.  This allows you to give the user helpful messages instead exposing them to the flatulence of FMPro.  For example, when you go into find mode and try to search without putting in any criteria, FM sits there with a big red x on the screen saying you don’t have valid search criteria.  Duh, so you can capture these error messages and check what they mean and have your scripts respond accordingly.  This made the search script really confusing for me.  I eventually broke down and used something nearly identical to a search solution used in one of the templates.  I think I was close but I forgot to assign exit scripts to the buttons "find all" and "cancel."  But, the second search script I made was a breeze because I had worked the first one out in a general fashion.  I basically copied all the steps to make the search scripts for all four main files.

It takes me a long time to set up the graphical elements in a consistent manner, mainly because I didn't think about that at all when I set up all the original files and layouts.  If I ever create another database I will not take that approach.  Granted, it is hard to know exactly which layouts you are going to need before starting, but you can set up template files that have your basic headers and backgrounds and move fields around as needed.

The next thing I wanted to do was set up some easy ways to enter in the gobs of data that will be necessary to get this thing up and running.  I had to think about this one a bit because we have a couple of different situations in which we would want to enter data.  In one, we know all the mice in the cage, the breeder pair and litter number they came from, genotype, and tag #.  It would be nice to enter all this at once for each litter, kind of like what I did in the wean litter script.  Another situation is when we know the DOB, DOW, and phenotype but not much else.  This is the case for the stargazer and some of the maintenance parts of the colony.  For these cages we will only want to enter # affected, # unaffected, DOB, DOW, and strain for each cage.  This makes me think we'll set up one script that manipulates Cages directly and creates new records in mice on the fly.  For the more detailed case we use that script as a subscript from within Litters and add the additional information on the end.  I'll pass everything to Mice (similar to wean litter) We'll do that for each cage and then at the end we can go through and create all the records in Breeders and Cages.  To do that I'll probably add a field to mice that holds an X when it has been used.  I'll start with the first record and make a cage and breeder record for that mouse's cage ID and breeder ID, respectively.  Then every mouse not X'd out with those ID's will get an X in their box and I'll go on to the next mouse without an X and do the same thing again.  This sounds like it might be a lot of work.  I'll have to think about it some more….

I just finished the script that will allow Maria to enter all her stargazer holding cages pretty easily. 

12/11/1998

Phew, that last entry was  weird.  I try to go back and make sure that what I said made sense to me, and that one did not at all!  [Don't worry, I didn't end up doing it that way at all!]  I hope I can be more lucid today….I just finished the set of scripts that allows you to set up breeding cages, either from mice with tag numbers, without tag numbers, or some of both.  To do this I created a layout in Breeders I called "Data Entry(simple)" that is nearly the same as Data Entry.  At least for now, the only difference is in how the breeding mice are displayed.  In Data Entry you have 5 relationships set up--one for each breeder that matches the MaleID (Female1 ID, Female 2ID, etc.) to the indexed tag# in Mice.  These relationships allow you to lookup the genotype, strain, etc., for the mouse immediately after entering the tag# in breeders.  That's nice because you don't have to enter all the data from Mice into Breeders again.  You only have to type the tag# of the mouse you want in that breeding cage and you get the good stuff from Mice to pop up automatically.  Toot-toot.

In the simple form I used only one relationship that matched Breeder ID in Breeders with Cage ID in mice.  Now, every mouse with the same cage ID as the breeder ID for the record you're looking at (in Breeders) is listed and sorted so the males are on top.  This allows you to put as many males and females you want in a breeding cage, just in case you wanted to do that.  If I didn't make this format we would be stuck with always having 1 male and up to 5 females.  Flexibility is good.

Now the script that sets up these breeding cages is one of my favorites so far.  From options, you go to edit database, to breeders, to set up new cage, and then you are given a message.  It looks like you are still in Options because the screen freezes.  However, the script is actually being run from Mice.  "How many of the new breeding mice have tag#s?"  Answers:  None/Some, All, Cancel.  FMPro is cool because you can talk to the user with these little messages and perform different scripts based on their choice.  I created a script in Options with two steps:  Go to original layout, and Halt script.  If Cancel is chosen then that script is run from Mice, and you are taken back to the place you left off in Options and the big script in Mice is exited (by Halt Script).  If you say halt script in Mice after calling a go to original layout script in Options then you go back to where you left off in Options, but the screen stays at Mice because that's the file that performed the last script step.  If you put both lines in the script in Options then you don't have to go back to Mice and you stay on the main menu screen.  These are the things that FM doesn't tell you in their manual.  Okay, so I didn't read the manual that carefully…they probably mention it somewhere.

It might be coagulative for me to describe the script in detail because it incorporates a lot of the things I've learned already.  It uses 10 scripts in 4 different files in a branched scheme.  Sounds complicated, and it took me a while…I'll give a broad description of the script, then break it down into its elements, show a diagram with the actual script names, and then write out psuedocode of each one for reference.

Like I said, it starts off with a message that is put up by a script in Mice.  If you select all, then that means that all the mice you want to place in a breeding cage together have tag#s.  Cool, so I wanted to be able to bring up a list of all the mice in Mice that have tag#s.  Many won't because they are used for maintenance purposes only, and these individuals are tracked mainly by affected or unaffected and DOB.  The format I made in Mice that shows the list also has buttons along the top that allow you to find a specific strain or look at a master list.  To make this the coolest script possible I wanted the user to just be able to click on the row containing the mouse they want and have it automatically stored in a new breeding cage with setup date, breeder ID, and other predictables already set up.  For now I leave it up to the user to check it and make sure it's right, but it seems to work great so far.  Anyway, once you have a list of all mice with tag#s, the next thing I did was create a new record in Breeders with the Breeder ID being Max(Breeder ID) + 1.  Setup date is set to today, and active is set to yes.  I actually got to reuse a script in Breeders that I made when I was putting the finishing touches on the wean litter script.

The next step is to send the mice that the user clicks on to the appropriate ID field in the new record in Breeders.  So, I created a looping script that pauses on entry.  I made all fields in the list layout in Mice = resume script.  When the user clicks on a field, the record containing that field becomes active.  I then have access to the tag#, cage ID, etc of the mouse that was selected.  First thing is create a transaction that records the movement of the mouse between cages.  This is a matter of creating a transaction script slightly different from the one I made for the wean litter script.  Just the to and from cage temp variables are a little different.  In wean litter, the from is the litter ID, and the to is the current holding cage.  In this one, from is the holding cage, and to is the Breeder ID of the new record in Breeders.  OK!

After the transaction is made I need to send the tag# of the active record to the new breeder record and put it in its place.  This was tricky because  the user could pick two males and the data entry form only has room for one.  Also, the script had to decide which femaleID (1, 2, 3, 4, or 5), to put the tag# in.  This was a matter of checking to see which fields were empty and what sex was attatched to the tag# and making a few ifs and loops and things (more later).

That concludes one iteration of the loop.  If the user clicked on any field in the list then these actions were performed.  What happens when all the mice have been entered into the breeding cage?  I made a button on the layout that was attatched to a script that set a new field, gCancel?, = 1.  (It was set = 0 at beginning)  The loop checks after the pause to see if that global variable is 1.  If it is then the loop exits and the user goes back to the main menu.  If not then the content of the loop is executed.

The concept is essentially the same when the user doesn't have tag#s for all the mice.  It's actually a lot easier in that case.  When the user doesn't know tag#s, then you switch to the simple layout in Breeders and change the cage ID of the current record in Mice to the new Breeder ID.  Then, when you go to Breeders, a list of all the mice in the cage will be there (because of the relationship I set up and the portal on the layout).  

This is a crude flow chart showing the different directions the user can go and the scripts involved(and the file they are used in).  Don't worry.  This probably won't mean anything to you yet.

"Setup new breeding cage"(Options)

|

"Create breeding cage"(Mice)

                         _________________________________|________________________________Cancel


           |        




              |


|    

All mice have tag#s

                        

 Some/None have tag#s      "Menu"(Options)

                 |






|
                           |

"Find mice with tag#s"(Mice)



             / \_______Cancel_______|


   |





            |

"Setup new cage(from Mice--Detailed)"(Breeders)
       "Setup new cage(from Mice--Simple)"(Breeders)


   |





            |

"(Detailed)Place chosen mice


       "(Simple)Place chosen mice in new breeding

in new breeding cage"(Mice)


            cage"(Mice)

    
     |





       |

Loop----->  "(Breeding)Create a transaction"(Mice)

  (This script loops also but does not call any

until


|



    additional scripts)

user


"Create transaction"(Transactions)
       |

cancels
     |





       |

      \
     "Put tag# in correct ID slot"(Breeders)

       |

        \


|


 
       |

           \


"Go to correct field"(Breeders)
       |

             \      |





       |


 \ _/ \ 





     /


         \________________________________________/





|




"Main Menu"(Options)

The end.  Now I'll give a little pseudocode for each script and then if you like you can go back and trace the path.  I will also point out as I go the traps that I fell into while writing the scripts.  Setup new breeding cage in Options merely calls "Create Breeding cage" in Mice.  Create Breeding cage calls the following subscripts.

1.)  "Find mice with tag#s"(Mice):One of the easiest of the bunch.  When you perform a find in a FMPro script you have to perform it before you start writing the script.  In this case I went into find mode, put >0 in the Mouse ID field, and clicked Find.  Then go into the scriptmaker and use the perform find(restore) script step to code your find request.  Now, whenever you call this script, FM will remember what you requested (tag#s > 0), and it will behave as if you had done it manually.

12/14/1998

2.)  "Setup new cage(from Mice--Detailed)"(Breeders):  This script first goes to the detailed form layout in Breeders.  Then it creates a new record in Breeders, and next it does a few quick calculations to fill in some fields automatically.  The breeder ID is ("B" & (Max(Serial ID) + 1)).  So the ID always starts with B, and the number following it is the maximum of a field called serial ID +1.  Serial ID is just the number following the B in the ID and is automatically entered because I set it up in define fields (under file).  The setup date field is set to the "Today" date function, active is set to yes, and then the "temp hold" field in Mice is set to the new breeder ID so the record representing the mouse that the user picked can know what new cage ID it should have.  I probably could have set it in Mice, but I was having problems so I cheated and did it from this script in Breeders.

3.) "(Detailed)Place chosen mice in new breeding cage"(Mice):  This is a looping script that does a couple of things.  The first thing it does is pause and wait for user input.  If the user picks a mouse's row then the script resumes with that record active.  (I set all fields in each row = to a button set to resume script)  If the user chooses the done button instead, a script that sets a global text variable, gCancel, =1 is performed and the current script is resumed.  So the loop checks to see if gCancel equals 1.  If it does then it exits the loop.  Otherwise the loop is performed.

First, a transaction is created in Transactions so we can track down when a mouse moved where if we need to.  This is done by calling a simple script called "(Breeding)Create a transaction"(Mice) that sets the global temps in Transactions = to the correct from, to, tag#, and date values that are based on the current cage ID, temp hold (set by Breeders), the tag# of the mouse, and Today, respectively.  It then calls create transaction in Transactions which is a mindless scipt that creates a record with the variables passed to it for its fields.  I would have made separate descriptions for these scripts but they're pretty easy I think.

Next, the cage ID of the selected mouse is switched to Temp hold so the mouse record now reflects its movement to the new cage.  Then, the global number variable, temp tag#, in breeders is set to the tag# of the current record.  This sets us up so we can place the current tag # in the correct ID slot in Breeders.  The next step calls "Put tag# in correct ID slot" in Breeders.

4.)  "Put tag# in correct ID slot"(Breeders):  The concept for this one is very simple, but as I have found, a script's conceptual simplicity rarely correlates with its ease of creation.  If the mouse whose tag# matches temp tag# in Breeders is male, then we have two options.  If Male ID is empty, we put the tag# in Male ID.  If it is not empty we just switch to the simple layout because we don't have two Male ID slots on the detailed form.  If the sex of the current mouse is female, then we have a little more work to do because there are 5 female ID slots.  First, I had to set the tab order on this layout so that tabbing from one ID would go straight to the next one.  That way I could set up a loop with go to next field at the end that could help me simplify the script.  The first step when the sex is F is go to Female1 ID field.  Then we start the loop.

I wanted the loop to go through each field, check if it was empty, then if it was you would set it = to the temp tag# passed to the script.  Simple, no?  The problems I ran into were never quite solved and I had to settle for a klutzy loop to get the job done, so don't fret over this one…as if you have fretted over the previous ones--geeze!  The main problem was that I found that IsEmpty(Status(CurrentFieldName)), which should return true when the current field is empty, didn't work as advertised.  So, I used a field called gFemale to hold the value of the current field by cut and paste, and then used it in the IsEmpty function to find which female ID slot was the first available one.  When it was empty the temp tag# was copied and pasted into it and the script was exited.  If the field tracker was = to female5 ID after all this then that meant that all 5 female ID slots were filled, so I just switched to the simple layout and exited the script.

The field tracker also came into play because when copying and pasting FM forgets what field it is supposed to be in for this iteration of the loop.  A script I used earlier called "Go to correct field"(Breeders) goes to the field name that is stored in field tracker.  I used this helper script at the end of the loop before the go to next field command, and also right before pasting the temp tag# into the empty slot.  This seemed to work well.

And we're done!  I may add some bells and whistles to this one later, but this is the basic methodology.  Now I don't really want to get into the scripts I used when not all mice had tag#s because they were much simpler than the detailed versions.  The concept was exactly the same--set the cage ID of the current mouse = to breeder ID of new record, and keep doing it until the user presses done.

I now have pretty much all I need to get Maria up and going on this one.  I figure she'll put in all her cages first, then create breeding cage records from the mice she knows came from the holding cages.  Or just create the records the breeders in Mice manually and run setup breeding cage of afterwords.  I showed her how to do it and she thought it would work nicely.  Whooop-doggy-dog!

12/17/1998

Now I need to make the setup new holding cage script in options more flexible.  The one I made for Maria works well, but only when the mice don't have tag #s.  So, I'm going to flash some messages during the script and allow the user to navigate through the different possibilities as they setup the new holding cage.  One of those possibilities will be the simple case that I created for Maria.  A version that takes into account the tag #s is what I need to make next.  I am thinking that it will be very similar to something I would need to make my wean litter script work better too because the one I have now works only for mice with tag #s.  So what I'm looking for is a way to setup a holding cage in a generic fashion so that I can use it from weaning litters and from data entry.  My thinking is that the script should be run from Cages.  For weaning, relevant info can be passed to Cages from Litters and the records for the mice in that cage can be created from Cages.  That way I can use the same script in Cages to create records in Mice when a new holding cage must be entered (probably during the initial data entry).

The first thing I did was make a near copy of the detailed form layout in Cages and add a temp 1st tag# field and a temp # pups field.   The user enters this data when they are recording a new cage with tagged mice, and that data is sent from Litters when new cages are set up after a weaning.  The records in mice can be created and listed on the same layout (through the portal), and they can be edited (tag #s, phenotypes, etc.) on the fly.

I just finished the holding cage script.  I made it so that I think I can use it to wean litters.  I set it up so cages takes a litter ID, DOB, DOW, cage ID, sex, # pups, and 1st tag # and creates the matching records in mice.  The script waits while it displays a list of the mice to allow the user to enter phenotypes.  The layout it uses has an OK button on it that resumes the script.  It can be called from any file, and in this case I called it from Options to set up a new holding cage, but I'm pretty sure that I can do it from Litters to help wean a new litter.  

1/7/99

So I finished the add new holding cage script I was talking about, and I made some changes to the format of Litters that will allow me to use it from Litters as well--allowing for an easy way to setup records in cages during weaning.  The Litter ID field in Litters had been an auto-calculation based on the breeder ID and the # of litters for that breeder (obtained by using an aggregate function over the portal in Breeders).  When I created a new holding cage from Options I figured most of the mice in the cage would be from the same litter so after creating the cage and the mice, it would make sense to create a record in litters as well.  Because I had set Litter ID as an auto-calculation field I could not enter info into it directly.  This caused a problem because I could not give the new record in Litters the litter ID entered by the user.  I could only get a calculation based on the breeder ID, which most of the time was wrong because no other information for the breeder is available when you're building the database.  So I got rid of the auto-calculation and simply calculated it in the new litter script that is activated in by a button in Breeders.  (This is the script that creates a new record in Litters, sets the DOB to Today, sets the breeder ID to the breeder ID of the record that activated the script, and waits for the user to enter the number of pups.)  Now I am able to set the litter ID of new records in Litters directly, and I added a couple of lines at the end of the create new cage script in Cages that creates a new record in Litters and sets the litter ID to the one entered by the user.  So, in summary, the new holding cage script in options will create the holding cage; but it will also create all the mice in that cage and a record for the litter that the mice belong to.

I had no idea when starting this project that I would be coding as much as I have been.  Luckily I don't have to know too much because FM has its own language, but because I don’t know much I probably have some klutzy scripts.  But it gets the job done so oh well…

Today I am going to work on the wean litter script that I tried to make before.  Now that I found I can use messaging to navigate through different parts of a script I don't have to make new layouts with yes and no buttons.  That will simplify the wean litter script a lot I think.  When the user presses the wean litter button, I want this to happen.  First ask the user if the mice in the litter have tag #s.  That will determine whether the script in Mice that creates records for each mouse in the litter will enter a tag# into the Mouse ID field or not.  I think I can carry this boolean through the scripts across files with more global fields.  Regardless of that global's value the user will then be asked if the litter still has X number of pups.  If not you go to the edit litters file to record the deaths of the pups.  Then you are taken through the same create new cage script described above.  If the litter has tag#s then the user enters the first tag# value and says ok.  If no tag#s then the user just says ok.  Saying ok creates records for all the mice in the litter and they pop up in the portal as they are created.  The user can then adjust phenotypes or genotypes as desired, say ok, and the script should be done.  The scripts in Cages and Mice are in place, but I will have to create the controller script in Litters.

Man!  That was so much easier than the way I was trying to do it before.  I got to reuse all the scripts I wanted to, and I basically only had to write the controller script in Litters to get it to work.  I also had to tweak the supporting scripts a bit so they would work in each situation, but it only took about an hour to do.  I then created a short weaning transactions script in cages that scrolls through the portal rows of a cage and makes a transaction for each one with the mouse tag#, litter ID(from), cage ID(to), and DOW(date).  This records the movement of the tagged pups from their breeding cage to their holding cage.

Finding things to do is becoming a bit harder.  I've been putting off the aesthetic part of the design because its not as fun, but I think I'll work on that a bit today…Grr…I don't like this part.

1/15/1999

Well yesterday we put the first real data into the database and there were a few kinks here and there, but everything seemed to work very well!  I had some strange behavior during one of the create new holding cage scripts.  I was doing a cage with tag numbers and two litters when it got stuck in a loop and was making records in Mice like crazy.  I never diagnosed the problem, so I'll have to be careful with that one.  When creating the new cages I forgot that I was creating litters from the cage data piggy-back style.  So after I entered litter info about the first 8 breeders or so I was shocked to find 41 litters in the file already.  It was actually fortunate because, even though those cages don't have associated litter Ids, they still have mice with similar characteristics.

I made a change to the create new cage script that allows you to enter multiple litters when there are no tag numbers, and I got rid of some annoying messages I had put into the script also.  I put the part of the script that asks you how many litters you have in the cage in its own script because otherwise I would have had to write the whole thing out twice.  That was working nicely.  I realize now that the scripts I was using to back up the database are pretty much worthless.  When switching from the original to the copy all the relationships get screwed up.  Working in the backup was also out of the question because of the same thing.  Trying to experiment with something solely within the clone database ended up messing with the original.  So I started using WinZip to just store the files occasionally and placing the zips in the backup folder.  Now, when trying to experiment I will zip up the originals, then play with the original files.  Then, if I screw up I'll just copy the zipped files over the screwed up ones.  If everything goes well I'll extract the old files into the backup directory and import their records back into the new files.  You may find a more elegant solution, but I'm all out of ideas on that one.  By the way, are you still there?  I hope I haven't lost you.  I think I'll try to collect frequently asked questions by Lisa when she starts to use the database and post a FAQ at the end of this file.  That should be helpful…

I still haven't made much headway into the skin of the database, but I've done about half of the Litters file and a tenth of the Options file.  The trick is to decide exactly what you want beforehand so that you can just cut and paste the specifics onto the different layouts without having to tweak a field back and forth a few pixels to try to get them to match up between layouts.  I had to learn that one the hard way.

I've also realized that some of the scripts that I run can be unstable, and if the user makes a mistake in the middle and cancels the script, often times there will be an incomplete record hanging around, and sometimes this can screw things up.  For example, if there is a new breeder record created and the user puts the wrong mice into it and cancels then the next time a breeder record is made it will have a Breeder ID 1 number too high.  After the initial setup of the database, I would suggest editing the thing without scripts for a while until you feel comfortable with the whole relational database thing.  Then when you have to cancel in the middle of the script you'll know what records in what files you have to delete before continuing.

Besides the infinite loop problem (which I couldn't reproduce) I didn't run into too many hitches that slowed me down a lot while trying to get the data into the files.  When recording new litters from their respective breeder records I realized that I would have to change the edit litters script step.  The way I had it set up you enter the new number of pups in Litter Edits and the script makes the correct changes to the number of pups in Litters.  The problem is that # deaths in the portal is then turned into a calculation field and you can't enter data into it.  This is not good.  So, I'll have to change the edit litter size script so that the user enters the data directly into the portal and then the litter size is adjusted on the way out of the portal.  The only other minor hitch that I remember was that creating the records for the breeding cages required creating the records for the breeding mice by hand in the portals, but I can't do everything in scripts I suppose.  I'm thinking that I'll post a scaled down version of the database and people can email me if they want the version with all the scripts.  That way I won't get nailed for errors in the scripts and people can make scripts according to how they do things.  I really hope that it will be useful.  If you're reading this and want to express yourself  you are free to send me email at cdavis@bcm.tmc.edu or caleb@pdq.net.  Let me know what you think.

1/22/1999

Well, I lost my entry into this log yesterday so I'll have to recall what I did.  We finished putting all the data into the database much quicker than we expected, and the reports and lists and things allow us to get a hard copy of what's in the mouse room as well as checklists to look at when we go up to wean litters or check breeding cages, etc.  Here's a brief description of the quirks that came up in the process.

That darn infinite loop thing came up again.  I really don't understand why it's happening because I was setting the loop variable = # pups which was entered.  If # pups (in create new cage(detailed)) was not entered then gcancel (the loop variable) starts off as zero, and by the time the loop checks to see if it should exit (if gcancel=0), gcancel already has 1 subtracted from it so it's = (-1).  Then the loop goes on indefinitely because 1 is subtracted from gcancel every iteration and it never =s 0.  If however, gcancel actually gets set to the # pups like it's supposed to then this is not a problem and the script creates the correct number of records in mice.  My fix was to set up a loop just before the loop that creates the records in Mice.  In this pre-loop loop first it checks if gcancel>0.  If it is then the loop is exited and you go on to create records in Mice.  Good.  If not then the meat of the loop is executed.  In it a message pops up saying something is amiss (telling you to re-enter the # pups), pauses the script, then sets gcancel=temp #pups so that it can be checked the next time through the loop.  When the loop exits you have a fail safe way of creating as many records in mice as was defined by the value in temp # pups (in Cages).  Are these details boring?  I don't know if it is helpful or confusing!  I am guessing it's confusing, but oh well.  If you're still with me and you want to understand the script just follow it line by line (printing out the scripts and subscripts really helps!--define what you want to print in print setup).  Also we wanted a way to know when in Cages a cage had multiple litters in it.  So I added a multilitter field that in the list layout is defined as a value list of one value, "Y," and is displayed as a single checkbox.  In the "setup new cage" script the number of litters in the cage defined by the user in Options determines whether this box is checked or not.  If it is not checked, then you should only have one litter.  In this case the DOB and DOW of the single litter are assigned to the cage because otherwise you have more than one DOB and DOW, and listing one set of them isn't representative of what's in the cage.  We're not going to worry about the records that were entered already, but we'll keep track of it in the future.  One of the things we discovered was that printing up a hard copy of the database is something that should be handled by one script in Options.  In it a list of all breeders, mice, and cages is printed out with the name of the file and today's date.  Also the wean list could be printed out with the others, but that we don't have to print up as often, so I'll leave it out of the super-script.  Dan also told me it would be helpful to have a diagram of how the relational database is setup, with descriptions of match fields and portals and relationships and such.  I'll probably make a tutorial that walks the user through a description of the database that includes this diagram.  Also, the setup new cage script goes to layouts where the portal fields are editable, but if the user types in them before the script is run then extra records in mice are created that shouldn't be.  So I made those portal fields un-editable, and switched between two layouts, one with editable portal fields and one without, in the script so that once the script was executed and the mice records were created, then the phenotypes and genotypes could be entered.  Also it may be that I'll have to go through and set allow user abort to off so that it's harder for users to screw up the action of the scripts by switching layouts or other such foolery.  I'm going to Dallas now.  My niece is so cute!

1/27/1999

Wow!  Everything is working really well.  I've had requests to find stuff in the database the last two days in a row, so we're already reaping the benefits of the database.  Fantastic.

Okay, enough of the mushy stuff.  I've been spending the last couple of days hooking up all the scripts in the different files into the main menu so that most everything can be driven from there.  It has been a lot of fun because I really get to do high level operations because all of the fundamental stuff is already worked out.  Basically this means I can climb up out of the dirt where I had been paving roads, and now the paths from place to place don't require putting my nose to the ground to re-pave the road because I know it's already there and functional.  It's great satisfaction.  Okay, so what did I do…I finished the state of the database report script.  It goes through every file and prints up a hard copy of what's in the database so that we can have it on record to take with us to the mouse room.  We write down changes that need to be made to the database (new cages set up, old ones taken down, etc.) on the hard copy and then we can go back and know exactly what needs to be changed in the database to keep it current.  Our new caretaker is coming next week, and I'm hoping that I can present this program to her pretty much finished so that she doesn't worry about it crashing or eating her data.  Not that you should worry about this, but editing the database, testing it, screwing the records up, and then importing saved records in has been a harrowing process, and I will be glad when it's over.  What else…I changed around the search forms in breeders and litters so they make a little more sense and left blanks in them so expanding the search capability will be easy.  I added a sex verified check box to the wean list printout and put more space for comments and added a strain field.  Also, in breeders I had a problem because I was listing the # pups field of litters instead the current # pups field.  The problem was that we went up to the mouse room with a hard copy printed out by the report generator.  It said we had 6 mice in a litter, but when we got to the cage there were only 2 in the cage.  Cool, okay so two died, right?  Wrong.  We had already recorded the death of those two pups but the field that got printed out on the report was listing the total # pups, not the number that is calculated from the original # pups and the # deaths in the litter.  No big deal, I just changed the # pups field in breeders to current # pups wherever it occurred.  Also I had a problem with my new litter script, but I simplified it so it was no longer an issue.  I did a user friendly thing in the "edit litter size" script that is run when you want to record some deaths in a litter.  I had put in a message telling you what to do, but it came up on top of Options, and it referred to things that existed in Litters, so it was a little confusing.  The script step "show message" was actually in Litters, so I just had the screen redrawn before the message popped up.  Now it is much clearer what on earth that message is talking about.

I was just thinking that all this description of the tweaking I'm applying to the database is probably not that useful to anyone because it doesn't help so much in how to use the database.  But, if anyone wants to know how it was made if they run into a problem then this document would be valuable.  Also it helps me feel better because if I couldn't look back on all the stuff I had done I would feel like I'm taking forever to finish this thing.

The next script I'm super proud of is the "combine multiple holding cages" script that runs out of Options.  In it a user can choose two cages that need to be combined into one.  The cage ID for each of the cages is given in a little box in Options, and the user first selects which cage is going to hold all the mice in the end.  I suppose I could create a new cage ID and just move them all into the new cage, but I feel that's wasteful.  So next the user picks out which cage has the mice that will be transferred.  The database then finds and displays a list of all the mice in the two cages.  The user is asked if these are the mice that are to be combined as a last safety measure.  Then it goes through each mouse on the list and checks a few things.  I start off by going to the first record.  The DOB and litter ID are stored in temporary variables, and the two cage Ids are also stored as temp variables (temp hold is old cage, and temp fhold is the final cage).  I check in the first step of a loop if the DOB and Litter ID of the current record is equal to the temp variables.  If it isn't then the multilitter box of the final cage is set to Yes.  (Mice moved in a cage w/ different litter Ids or DOBs should be from different litters)  Also, if the cage ID of the record is not equal to the final cage ID, then a transaction is created that has the mouse moving from the old cage to the new cage on today's date.  The user is prompted to make sure that the transaction record is correct.  At some point I'll take those little precautionary measures out to make usage smoother.  Then, if the cage ID doesn't equal the final cage ID then it is changed to match the new cage ID.  Finally, the old cage is set to inactive, and the # affected, and # unaffected in both cages is recalculated for consistency's sake.  That old # affected, # unaffected stuff is getting to me because it doesn't automatically calculate it based on a relationship.  I think I can change the names of the fields I already have to globals, and then make other ones that are calculation fields that are uneditable.  I think I had the editable ones because I used them as fields to be filled in during the new holding cage script.  Ah, I'll fix it. 

5/3/99

Well MouSeek has been everything we had hoped it would be and more.  I have added many things to the database that make it more powerful and easier to use.  I hope to finish up this document and write a ReadMe file and then make everything publicly available.  Then we’ll see if it’s useful for anyone besides us…The main hurdle I think will be the nomenclature that we use for our records.  Not everyone will have breeding cages with ID numbers like B30, and not all litters will be given ID numbers like B30-4.  This numbering style is heavily integrated into the operation of the database.  For example, when you tell the database that a breeding cage had a new litter, it will try to see how many litters the breeder has had, then look at the breeder ID, and make a litter ID of “BreederID”-(#litters+1).  We simply went through all of our cages and just started numbering everything with the new numbering system, and then we used some simple scripts to enter the information efficiently.  The whole process took a day, and we had several hundred cages to number and enter into the system.  That single day now seems like a very low price to pay for the benefits that we get from having all of our mouse information in one place that anyone in the lab can search through at their convenience.  Of course I am biased a bit…

I promised a final description of the database, so here goes, from the highest level down:

Options:  This is the equivalent of a main menu.  From this file you can do pretty much everything:  search all the files for particular records, print reports, wean litters, record births, create new cages (useful when first setting up the database), transfer mice between cages, take down cages, record deaths of mice whether they be in holding cages, breeding cages, or unweaned litters.  This is the driver’s seat of the database.

Breeders: This file will contain information about why the breeding cage was setup and at what date.  A yes/no field will show if the cage is active.  Information about the sire and dam(s) in the cage (tag number, genotype, strain, DOB, and Litter ID) is shown in a portal.  Another portal displays information such as Litter ID, DOB, # Pups, DOW, and # males and females for each litter that came from the breeding cage.  This format allows a record in Litters to be created and edited within the breeder record.  The Breeder ID is in the form BX where X is the number assigned to the breeding pair.
Litters:  This file holds information on all of the litters produced by our breeding cages. From Litters you can see information about all the mice in the litter, assign genotypes to mice in the litter, record deaths of unweaned pups, or go to the breeder record for the litter. Nomenclature for the Litter ID is simple: BX-n is the nth litter from breeding cage BX.

Cages:  This file stores records for every non-breeding cage we have in the mouseroom.  Information about each cage includes the sex, date of birth (DOB) and date of weaning (DOW) (if the mice in the cage came from the same litter), strain, and general comments.  In addition, a portal shows information about each individual mouse in the cage like genotype, litter ID, etc.  Nomenclature for the Cage ID is really basic.  Hn is the nth cage in the database.

Mice:  This is essentially the same "flat" (as opposed to relational) database we had to begin with in Excel.  The strain, DOB LID, genotype, Cage ID, and comments for each mice are listed by tag #.  Additionally, you can jump to the mouse’s litter or the mouse’s breeder from its record if you have the ID fields filled in to make the links possible.  For example, you can get to the record of the mouse’s litter and see all of its littermates only if the Litter ID field for the mouse is filled in with a valid Litter ID (one matching a record in Litters).  Furthermore, if you want to get to the mouse’s breeder, then the Breeder ID for the mouse’s litter has to have a valid Breeder ID in it too.  If all of these ID fields are entered correctly then it is a breeze to browse through many generations of mice for data collecting purposes.  (I’ve even begun a pedigree-drawer that will do this graphically for you!)  This is probably one of the most useful features of the database, and I have made it foolproof because all ID numbers are assigned automatically as new litter and mice records are created through births or weanings.  Different nomenclature can be used in the database, but extensive editing of the scripts that automate data entry will be necessary if the user wishes to keep these relational links foolproof.  

Clicking on the cage icon next to the cage ID field jumps you to the record of the cage the mouse is in currently (holding or breeding).  Changes in any record in Mice are reflected in other files that reference the same record and vice versa.  This was done to increase data entry flexibility.

Every other file that the database uses (Transactions, Litter Edits, and Mouse Edits) is a helper file.  Deaths that occur in a litter before a litter is weaned are stored in Litter Edits for easy access through a portal in Litters.  The Transactions file stores information about when a mouse was moved from one cage to another.  If we ever need to know the state of a cage on a certain date, then we can search the transactions file for all records of mice moved into or out of that cage within a range of dates.  This has saved our you-know-whats a couple of times already when we lost track of what males were breeding with what females.  The Mouse Edits file is one we haven’t been using very much, but we could store experiment information in that file if we wanted to.  Information can be entered through a portal in Mice, so you should never really have to open this file directly, but of course there is nothing stopping you from doing so.

That is pretty much it concerning the file structure.  Just about everything else in the database is tinkerable, meaning that you can experiment with layouts and scripts and things, but these main files and the relationships that link them together (Cage ID, Mouse ID, Breeder ID, and Litter ID) should only be changed if you know what you're doing.

And that about does it for this document.  I may be willing to make minor adjustments to the database for anyone who thinks that MouSeek would be useful to them but they need different layouts, scripts, or reports.  I might think about helping with a different nomenclature system too, but that would require much more work.  Thanks for using MouSeek and be sure to let me know what you think.

Caleb F. Davis

Department of Neurology

Baylor College of Medicine

Cdavis@bcm.tmc.edu
